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Abstract: In this study, we analyze the variation of pressure 

under different values of (
𝑽

𝑽𝟎
) for nanomaterials using second

order pressure derivative of bulk modulus equation of state. 

Second order pressure derivative of bulk modulus show fine 

studies of nanomaterials. The Gupta & Gupta EOS is used to 

calculate the resultant data of ε-Fe (Hexagonal iron), α-Fe2O3 

and Ni-filled MWCNT nanomaterials and compared with other 

equations of state, like Tait EOS, Mie–Gruneisen EOS, Vinet 

EOS and experimental data available in literature. The resultant 

data show good agreement with experimental data and other 

EOSs. 
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I. INTRODUCTION

Nanomaterials are expected to be the turning point of the

next technological revolution in solid-state electronics, to 

emerge as new structural materials, the nonomaterial 

described in principle as material of which a single unit 

small sized between 1 to 100 nm. Material science-based 

approach to nanotechnology to serve as systems for 

controlled drug delivery and to have a considerable impact 

in practically all domains of science. The nanomaterials are 

very sensitive to external parameters like pressure, volume, 

and temperature. The pressure temperature and volume 

research has developed an interdisciplinary area that has 

important applications in various fields of science one of the 

important outputs of the experiment is pressure volume 

temperature relationship terms EOS can determine various 

properties of nanomaterials under varying conditions of 

pressure volume and temperature [1-3]. The formulation of 

bulk modulus of the second-order pressure derivative with 

thermal expansivity is derived by Rohit Gupta et al. [4]. 

Nanomaterials have attracted the attention of researchers 

because of their wide applications [5, 6], their properties and 

structure stability display many differences as compared 

with bulk materials because of its small size. 

Manuscript received on 08 September 2024 | Revised 

Manuscript received on 20 September 2024 | Manuscript 

Accepted on 15 October 2024 | Manuscript published on 30 

October 2024. 
*Correspondence Author(s) 

Vishal Singh, Department of Physics, Agra College, Agra, Dr. Bhimrao 
Ambedkar University, Agra (U.P.), India. 

Dr. Rohit Gupta*, Department of Physics, Agra College, Agra, Dr. 
Bhimrao Ambedkar University, Agra (U.P.), India. E-mail ID: 

rohitguptaagraindia@gmail.com, ORCID ID: 0000-0002-3452-2507 

Mohit Gupta, Department of Applied Science & Humanities, Technical 
College, Dayalbagh Educational Institute, Dayalbagh Agra (U.P.), India. 

Dr. Brijendra Kumar Sharma, Department of Physics, Agra College, 

Agra, Dr. Bhimrao Ambedkar University, Agra (U.P.), India. 

© The Authors. Published by Lattice Science  Publication (LSP). This is 

an open access article under the CC-BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Recently researchers have much attention to nanomaterials 

because the temperatures of nanomaterials are different from 

that of the corresponding bulk materials. The melting 

temperature of nanomaterials with free surface decreases 

with a decrease in the crystal size [7-12]. There is evidence 

that the nanomaterials and equation of state depend on the 

size [13, 14]. J. Diederichs et al. [16] suggest neutron 

diffraction studies of the compressibility of Rb3C60 material 

by equation of state for DAC results show limited accuracy 

in pressure. B. Chen et al. [17] show the size effect on the 

bulk modulus possible for high-pressure phases, different-

size nanocrystalline nickel under high pressure. J. Tang et 

al. [18] studied X-ray diffraction data with a synchrotron 

source by non-hydrostatic and quasi-hydrostatic conditions. 

Bulk modulus was found different during no phase 

transition was observed for either non-hydrostatic or quasi-

hydrostatic compression for the pressure range of these 

experiments. High-pressure compression behavior of carbon 

nano-tubes has been studied experimentally.  

Piermarini et al. [19] studied the hydrostatic properties of 

Fe2O3 nanocrystal revealing different behaviors under 

pressure was synthesized by micro emulation method in 

several systems of water, sodium, chloride, isopropyl 

pentane, pentane coated with one benzene sulphonic. The 

system suggests the qualitative nature in the characterization 

of quasi hydrostatic state. Z. jing et al. [20] Fe2O3 sample 

was characterized by using high-resolution transmission 

electron microscopy the nanocrystals are spherical there is a 

phase transition of Fe2O3 to Fe2O3 when the pressure 

reaches high. B. Chen [21][34][35][36] studied X- ray 

diffraction measurements on the nanocrystalline iron has 

been the subject of many experimental and theoretical 

parameter data for nanocrystalline Fe analysis of lattice 

grain growth was observed to occur under pressure.   

Rekhi et al. [22] investigate the effect of particle size on 

the compressibility of MgO, Wang et al. [23] performed X- 

ray diffraction study on MgO at particle. H. Mao et al. [24] 

studied the EOS of nanocrystalline CuO using high energy 

synchrotron radiation and Raman spectroscopic techniques. 

Nanocrystalline Al2O3 was compressed quasi-hydro-

statically to pressure up to 60GPa in a Mao-Bell type DAC, 

at room temperature, B. Chen et al. [25] the X-ray 

diffraction study has studied particle size effect on the 

compressibility of nanocrystalline aluminum room 

temperature at X-ray diffraction for nanocrystalline particle 

size result found that compressibility increases with 

decreasing particle size. 
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II. METHOD OF ANALYSIS 

In this study the second-order bulk modulus equation of state (EOS) is used to determine the effect of pressure on 

nanomaterials, where P is a function of relative change in volume (
𝑉

𝑉0
) as follows [26]: 

                  𝑃 = 𝐵0 (1 −
𝑉

𝑉0

) + 𝐵0 {
(𝐵0

′ + 1)

2
} (1 −

𝑉

𝑉0

)

2

+ 𝐵0 {
(𝐵0𝐵0

′′ + 3𝐵0
′ + 2)

6
} (1 −

𝑉

𝑉0

)

3

      (1) 

Tait EOS is studied for comparison purposes and will be described as follows [27]: 

 𝑃 =
𝐵0

(𝐵0
′+1)

[𝑒𝑥𝑝 {(𝐵0
′ + 1) (1 −

𝑉

𝑉0
)} − 1]                                            (2)  

Mie–Gruneisen EOS reads as [28], 

𝑃 = 𝐵0 (1 −
𝑉

𝑉0
) +

𝐵0(𝐵0
′+1)

2
(1 −

𝑉

𝑉0
)

2

                                                     (3) 

Vinet EOS reads as [29], 

𝑃 = 3𝐵0 (
𝑉

𝑉0
)

−2
3⁄
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𝑉

𝑉0
)

1
3⁄

] 𝑒𝑥𝑝 [
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1
3⁄

}]                                                    (4) 

 

The experimental data are taken from Sharma and Kumar [30]. The experimental data show satisfactorily explains Eq. (12) 

for the high-pressure elastic behavior of nanomaterials. It is clear from the table and figures the calculated data less deviates 

from the experimental data. So the proposed equation is verified to analyze other nanomaterials. 

Table-1: Shows Values of B0, B'0, and B''0 and Average Percentage Deviations using from Eq. (12) 

Sl. No. Nanomaterial B0 (GPa) B'0 B''0 Max Pressure (GPa) 
Average % Deviations (0 to Max 

Pressure) 
References 

1 ε-Fe (Hexagonal iron) 179 3.6 0.24 41.41 3.13 [31] 

2 α-Fe2O3 336 4 0.192 32.20 3.53 [32] 

3 Ni-filled MWCNT 190.4 4.0 0.36 18.40 2.92 [33] 

III. RESULTS AND DISCUSSIONS 

Second-order pressure derivative of bulk modulus EOS for 

nanomaterials are predicted by our previous studies. In this 

study, we predicted the second order pressure derivative 

EOS under different values of (
𝑉

𝑉0
) for ε-Fe (Hexagonal 

iron), α-Fe2O3 and Ni-filled MWCNT nanomaterials 

respectively, and compared with several other equations of 

state, like Tait EOS, Mie–Gruneisen EOS, Vinet EOS and 

experimental data available in the literature. The Gupta & 

Gupta EOS shows good agreement with experimental data. 

It is clear from table 1 and fig. 1, 2 and 3. The average 

percentage deviation is calculated under 0 to maximum 

pressure for ε-Fe (Hexagonal iron), α-Fe2O3 and Ni-filled 

MWCNT nanomaterials respectively 3.13, 3.53, and 2.92 

using the maximum pressure 41.41, 32.20, and 18.40. So the 

EOS for second order pressure derivative of bulk modulus is 

used to find the fine studies of nanomaterials. 

 

Fig. 1: Show High-Pressure Compassion Behavior of 
𝑽

𝑽𝟎
 for ε-Fe (Hexagonal iron) Nanomaterial Using Study 

Under Several EOSs 

 

Fig. 2: Show High-Pressure Compassion Behavior of 
𝑽

𝑽𝟎
 for α-

Fe2O3 nanomaterial Using Study Under Several EOSs 

 

Fig. 3: Show High-Pressure Compassion Behavior of 
𝑽

𝑽𝟎
 for Ni-filled MWCNT Nanomaterial Using Study 

Under Several EOSs 
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IV. CONCLUSIONS 

The second-order pressure derivative of bulk modulus 

EOS is predicted by Gupta & Gupta. It is used to find the 

fine data for previous EOS of nanomaterials. So this EOS is 

very useful under the high-pressure compression behavior of 

nanomaterials. The major advantage of theoretical EOSs are 

that the experimental data is not available; we can calculate 

data from given EOSs. Therefore the EOSs are very useful 

under high-pressure compression behavior because at very 

high pressure the observation of experimental data is not 

easy. It is clear from that figures; that EOSs are a simple and 

effective method to find data under compression behavior of 

nanomaterials and solids. 
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