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System of N Thin Coaxial Lenses

M. I. Karimullah

Abstract: In geometrical optics, in a system of two thin coaxial
lenses, there are several standard formulas, including “% = fl+
1
1 d

— ——". The purpose of this paper is to generalize these
f2 fif2

formulas to the case of a system of an arbitrary number of thin
lenses. In particular, this paper proves that the focal length Fn of

a system of n thin coaxial lenses is given by m

n—-1 m a 1
m=0 {(_ 1) [<2r:=as_1+1 F) das }7
0=ap<a;<<am<amii=m;dy=1 " °

where, f; is the focal length of the r" lens, and d: is the distance
between the r" lens and (r+1)™ lens. For a fixed value of m, all
combinations of values of the a’s (satisfying the condition “0 = ao
<air<...<am<am+1=n") are taken in the inner sum.

m+1
s=1

Keywords: coaxial lens system, focal length, Gaussian lens
equation, magnification formula

l. INTRODUCTION

In this article, the term “lens(es)” is taken to mean “thin

lens(es)”. The diagram below shows a system of n lenses, in
which the " lens is denoted by L. A ray of light AB,
parallel to the principal (or optical) axis XY of the system, is
refracted at B by the first lens, L1, and emerges along BC.
The ray is then refracted by subsequent lenses (of which
only L, is shown) and finally emerges from the system
along EF to intersect XY at F. AB and EF intersect at D and
DH is perpendicular to XY.

/]

Diagram 1

The following are some (established) definitions.
= F is called the image focus (or rear focal point or
back focal point) of the system.
= His called the Image Principal Point (or image unit
point or second principal point or second unit point)
of the system.
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= The distance between HF is called the image focal
length of the system.
If the ray of light AB were to travel in the opposite direction
(i.e. from right to left) and intersect L, first and finally
emerge from L, then there would be a corresponding
= object focus (or front focal point) of the system
= object principal point (or object unit point or first
principal point or first unit point) of the system
= object focal length of the system
The reciprocal of the object focal length is called the
object power of the system. Similarly, the reciprocal of the
image focal length is called the image power of the system.
For a single lens and a system of two lenses, it has been
established that the value of the object focal length and the
value of the image focal length are the same.

1. SYSTEM OF 2 LENSES

The following notations are used in the formulas below for
a system of two lenses.
=  The power of
= the first lens is kg
= the second lens is k;
= the lens system is K
= The focal length of the lens system is F
= The distance between
= thelensesisd
= the first principal point and the first lens is
hs
= the second principal point and the second
lens is hy
= anobject and the first lens is u
= the corresponding image and the second
lensisv
= The transverse (or linear) magnification ism
The following are well-known formulas for a system of
two lenses [1].
= K=k; +k, —dk;k,

= h =L
17 K+ kp— dkqko
n h :L
2 7 kit kp— dkg ks
. 1 1 _1
u+h;  v+hy F
v+h
[ ] m:Tz_l

From the above formulas, if a system of two lenses
= of power k; and k,
= and separated by a distance d apart
is replaced with a single lens
= of power k; + k, — dk,k,
= and positioned between the two lenses at a distance
of h, from the second lens
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System of N Thin Coaxial Lenses

then, the usual formula % + % = % holds, where

= Fisthe focal length of the replacement lens
= V is the distance between the image and the
replacement lens
= and U is the distance between the object and the
first principal point.
This paper generalizes the above formulas to the case of a
system of n lenses. Also, other results are established.

1. GENERALIZED FORMULA FOR THE
OBJECT POWER

A. Notation Used

The following notations are used for a system of n lenses.
=  Ther"lensis L,
=  The distance between L and L1 is d;
= The focal length of the r'" lens is f;
*  The power of the r'" lens is k;
= The (object) power of the lens system is K,

B. Small Values of n

The formula for K is derived using the equation ﬁ + % = %

together with a real image (considered a virtual object) and
similar triangles. The formula is given by K, = k; + k, —
kidiky = [Ky + ko] — [(kq)d; (k)]

By using this very method (i.e. virtual object and similar
triangles) with three lenses (L1, L2, and Ls) the formula for
K3 can be obtained. Alternatively, the formula for K3 can be
obtained as follows.

L; and L, are replaced with a single equivalent lens, say
Li2, SO we are now dealing with 2 lenses, Li2 and Ls. As
mentioned above, L, is of power K, = k; + k, —d k;k,
and is positioned between L; and L. at a distance of

dikq .
T from L.. Thus, the distance D between L1, and
diky

L3 is given by D= dz + m

Hence: K3 = K, + k3 — DK k;

=K, +k; — (d + — L) Kk,

Kq+ kp— d1kq Ky

= (ky + ko = dikyka) + ks = (d + o) (o +

k; —dik;Kk;)ks

= (kg + k, —dikiky) + k3 — (do{k; + k; — dikk,} +

diki)ks

=k, + k, + k3 —d;k;k, —dy(ky + k, —d; kK ky)ks —

dikik3

=Kk; + k, + kg —d;kk, —dy (kg + ky)ks +

dpd;kikyks — dikqks

=k, + k, + k3 —d;kk, —dk ks —dy(k; +

kz)ks + dadikikoks

= [ky + kp + k3] — [(ky)di (ks + k3) + (ky
+ky)d;(k3)] + [(kq)dy(ky)dp(ks)]

Similarly, with four lenses the following formula for K, is

obtained:

K, = [ky +k,+ ks +ky]

— [(kpdy (ks + k3 + ky) + (kg + kz)da (ks + Kky)
+ (kg + ka + k3)ds(ky)]
+[(ky)dq(kp)da (ks + ky) + (ky)dy (ky + k3)ds(ky)

+ (ky + kz)dz(k3)ds(ky)]

Retrieval Number:100.1/ijap.B105104021024
DOI:10.54105/ijap.B1051.04021024
Journal Website: www.ijap.latticescipub.com

- [(kl)dl(kZ)dZ (k3)d3 (k4)]
C. Proposed Formula for Kn

In the formulas for Ky, K3, and K, the terms having the
same number of factors of the d’s are grouped using square
brackets. The sum of the terms in the (m+1)™ pair of square
brackets is denoted by Tp.

The following pattern seems to be developing:

= K, is composed of To, Ty, ..., Tha.

= The sign preceding T is (-1)™.

=  Tqisasum with each summand being a product of
the following factors: m d’s and m+1 sums of k’s,
with each sum of k’s enclosed in a pair of
parentheses, ().
Note the following:

= Some of these “sums of k’s” may have only a
single term.

= In each pair of parentheses, the index of the last k
(except when not equal to n) equals that of the d
which follows immediately.

= Each summand has m d factors out of a possible of
n-1 d’s. Thus, the number of summands in Try iS ™
1Cm (a hinomial coefficient).

A typical summand in T is

(kg + -+ ko, )da, (Kay 41 + -+ ko, )da, oo (ka1 +
w4 ko )da (Ko 41 + -+ ky), Where the a’s are
integers satisfying 1 <a;<... <am<n-1.

This typical summand

= {Hlsn=1(kas_1+1 +-+ kas)das}{kam+1 +-+ kn}v
where additionally ag =0

= {H?ﬂ[(Z?::as_lH krs)das]}{Z¥m+1:am+1 krm+1}

= [T (20 s, +1 Kry )da, ], Where additionally am. = n
and d =1(ie.dy=1)

aAm+1

For a fixed m, by giving the a’s all possible combinations of
values satisfying 0 = ap < a1 < ... < am < ams1 = N, all the
summands in Ty, are obtained.

. — TTm+1 as
Thus: T, = [12 l( remag_q 41 krs> dasl
0=ag<a;<-<am<am4+1=n;dp=1

Hence: K,, =

n-1 m Tm+1 ds
m=0 {(_1) Hs:l [( rg=ag—1+1 krs> dasl}
0=ag<a;<-<am<am+1=n;dp=1

D. Strategy for the Proof of the Proposed Formula for
Kn

This formula will be proved to be the (object) power of the
system by the Method of Mathematical Induction and by
employing a strategy explained in this section.
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L, will be replaced by two lenses L™ and L+1 (with power K and kq+1, respectively) that are
= separated by a distance of d, apart, so that the focal length of the system consisting of L™, and Ln.1 is equal to the focal
length of L, (meaning that the system consisting of L™, and Ln.1 is equivalent to Ly)
Thatis:k, = k _ + Kpi1 — K pdnknsa
= appropriately positioned so that the object focal length of the new system of n+1 lenses is equal to the object focal
length of the original system of n lenses (meaning that the system consisting of the n+1 lenses is equivalent to the
system consisting of the n lenses)

Ln-1 was at a distance of dn.1 from and to the left of L. The distance d.1 (between Ly.1 and L™,) will now be determined.

The diagram below shows a ray of light AC, parallel to the principal axis XY of L,, being refracted at C and then intersects
XY at F, the object focal point of L.

Ln is replaced with L™, and Ln1 to maintain the same object focal point (F) and the same object focal length (HF).
Therefore, the ray AB is now refracted at B by Lq+1 and is subsequently refracted at D by L, to pass through F.

Ln+1, Lnand L, intersect XY at P, H, and Q, respectively. BD intersects XY at G and DF intersects AB at C.

c B A

/

L'n Ln Lnet
Diagram 2

PQ =dn, PG = fyyp and HF = f,.
Let HQ = x.
DQF and CHF are similar triangles. Hence: A S cH= DQE

DQ QF QF
DQG and BPG are similar triangles. Hence: - X Bp= DQE

DQ QG QG
HF _ PG HF PG fn _ fn4r

Since CH = BP=> DQ e =pQa o M X8, - — _fot1
QF QG QF QG  HF-HQ PG-PQ  fy—-x fpyq-dp

I:ndn — kn+1dn — dnkn+1
fn+1 kn k nt kn+1 -k ndnkn+1

= fpp1(fh — %) = f,(fo —dp) = fpx =fid, 2 x =

Hence: in the system of n lenses, if L, is replaced by L, and Ln.1, satisfying the following conditions, then the object focal
length of the new system of n+1 lenses is equal to the object focal length of the original system of n lenses.
= L', and Ln+ are separated by a distance of dy
= kp=k nt Kn+1 — Kndnknia
. .. L. . dnKn+1
L, is positioned at a distance of o kb
Hence: the distance d*,.1 (between Lq.1 and L) is given by

from and to the left of where L, was

\ dnKpi1
d e dn—l B l(\n + kn+1 - l(\ndnkn+1
N dnkn+1
dy_q =d - - -
= Gn-t nl+kn—|'kn+1_kndnkn+1
dnkn+1

d_k:(d\_ < - >k\ kyi1 — K ndk
= n—1%™n n1+kn+kn+1_kndnkn+1 ( n+ n+1 n“n n+1)

= d\n—l(k‘n + kn+1 - k‘ndnkn+1) + dnkn+1
=dpkpsg +d o1 (kn+ kpy) — dpgk ndpknygg

Hence, if the following replacements are made on the right-hand side of the equation

n-1 m+1 ( as w
Ko= > 1D | > Ky | da,
m=0 s=1 |\ rs=ag_1+1 /

0=ap<a;<--<am<amp+1=n;dp=1

= kqisreplaced withk , + kyyq — K pdpkniq
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»  dnakn is replaced with dpkyq +d poq (K + Kpyq) — d noik ndnKpsq
then we ought to get the expression for Kq.1. This expression for Kq.1 would be the same as Ky; except that n has been
incremented by 1. This is effectively the induction step in the Mathematical Induction used immediately below.

E. Proof of the Proposed Formula for K,
The following formula for K, will now be proved by Mathematical Induction.

'
, me1 . |
Ko=) {0m] ] ( > krs) da,

0 s=1 rs=as—1+1
| \0=ap<a;<-<am<am+1=n;dp=1

|
[N

=
I

For the base case, when n =1,

0 m+1 as 1 as
K; = Z 1 (=Dm™ 1_[ Z krS das = (_1)0 1_[ Z krS das
m=0 s=1 rs=as—1+1 s=1 rs=as—1+1
| \0=ap<a;<-<am<am+1=1;d;=1 ) 0=ag<a;=1;d;=1
=1 D k= | Dk A=k =K
ri=ap+1 ri=1
0=ag<a;=1;d,=1 d;=1

Thus, the formula is trivially true when n = 1.

For the inductive step, assume that the formula is true for n a certain value of n> 1.

In the below, the square brackets following an expression have the label Ex (to identify the expression) followed by the
applicable constraints [of which “0 = a; < a; <+ < ap < ap., = 1;d; =17 is assumed to be always present until L, is
replaced].

Let the value of K, be v. Thatis: v = Y11 {(—1)m [1mAt [( ?§=as_1+1 krs) dag } where 0 =a; <a; < <ay <
amyr =n;dp =1
Splitting v as E; (the summand corresponding to m = 0) plus E; (the summand corresponding to m = n-1) plus E; (the

remaining summands), gives
1 as

(S

s=1 rs=as—q1+1

n as
+(—1)“-1]_[I >k |da,| (B =]
s=1

rg=ag—1+1

daS [E;;a; = n]

S

m+1 as

n-2
3T D) ke Jdas|{HEsiamen =]
m=1

s=1 rs=as—q1+1

In E3, separating out the combinations for an = n-1 (denoted by E4) and for am < n-2 (denoted by Es), gives
1 as
=l 2 s

s=1 rs=ag—q1+1

das [E;;a; = n]

N

n [ as

I D) ke Jdag|[Baian =)

2 AE I D ke Jda[{ [Baiam =n = Lap, = n]
m=1 s=1 [ \rs=as_1+1 ]
n-2 m+1 ag

—[ Z kl‘s das [ES’ am <n-— 2' am+1 = n]

m=1 s=1 rs=as—1+1
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Recall the condition: 0 = a, < a; < < ay < apye; = N

Therefore: m=n-1=a,=r, v r € [0O,n].

In the summand of E4, when m = n-1, E; is obtained. Hence, merging E4 and E; gives Eg.
1 as

SV = 1_[ Z krS das [El: a = n]

s=1 rs=ag—1+1

n—-1 m+1[ ag

O E0 I D) ke |das| { [Eosam =n = Laps, =n]
m=1 s=1 | rs=ag—1+1 ]
n-2 m+1[ ag

O E0 I D) ke Jdas| { [Esiam <n = 2,ap =]
m=1 s=1 | rs=ag—1+1 ]

In Es if m were to be set equal to 0, the summand becomes (—1)° [12+1 [(ijzas_lﬁ krs) das] ,witha; =n

= (Z’;‘llzal_lﬂ krl) d,, = (Z?Faoﬂ krl) d, = ¥r,=1k,, ,sincea, = 0 and d, = 1. This is the same as E:.
Note that in Es, the condition a,;, < n — 2 is applicable only whenm > 1. Whenm =0, a,, =0

Hence, merging Es and E; to give E7 results in
m+1 as

n-1
v= 0TI DD e ) da|{ [Esiam = n = Lame =)
m=1

s=1 rg=ag—1+1

m+1 as

n-2
O ED I D) ke |das| {Eriam <n = 2,ap =]
m=0

s=1 rs=as—q1+1

Re-writing E¢ and E7 as Eg and Eg, respectively, gives

n-1 m-—1 as n-1
v=2EDM I D) ke )da| ][ D) ke |ducikn {[Bsiam =n— Lame, =n]
m=1 s=1 rs=as—1+1 rm=am-1+1
n-2 m as n-1
O 3EM I D) ke JdaPl D ke Fka |{[Boiam < n—2,ame = 1]
m=0 s=1 rs=as—q1+1 I'm+1=am+1

Note that, at this stage, the assumed constraints “a,,,; = nand d, = 1” have been incorporated; they are no longer needed
or applicable. Then the assumed constraint that remains is “0 =ap<ai;<... <am<n”.
In Es, the constraints am = n — 1 and am+1 = n can and will be replaced with am1 <n-—2.
Replacing the constraints gives

n-1 m-1 as n-1
v= 2 E0M I DD ke Jdpl D) ke Jduaka ([Egiam <n 2]
m=1 s=1 rs=as—1+1 rm=am-1+1
n-2 m as n-1
+ z (—1)m{1_[ Z K, | da, [} Z Ke .. +Kn | [Eo;am < n—2]
m=0 s=1 | \rg=ag_1+1 I'm+1=am+1

Ln is now replaced by L', and Ly.1, to have the value v be unchanged.

That is: ky is to be replaced with k', + k41 — K ,d,Kp41, and dn-ikn is to be replaced with d k.1 + d p—1(K  + Kniq) —
d n—1k ndnkn+1-

Hence, Es and Eg become Eio and Ej, respectively, as the following shows.

n-1 m-1 as n-1
v = Z (—1)m{1_[ Z ke, | da [} Z Ke | (dnknes + dnoy (K o
m=1 s=1 rs=ag—1+1 'm=am-1+1
+ Kny1) — d po1k ndnkngq) ¢ [Ergsam—g < n—2]
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n-2 m as n-1
O ED |1 D ke JdaPl DD e K0+ s = Kadaknss | [Easiam <n—2]
m=0 s=1 rs=ag—1+1 'm+1=am+1

Splitting up Eio as E1z + E13 + E14, splitting up Ex1 as Eis + Eis and dropping the dashes in dy.1 and k,, for convenience, gives

n—-1 En—l as n-1
V= Z (_1)m{ —[ Z krs das } Z krm dnkn+1 [E12i Ap-1 SN — 2]
m=1 s=1 rs=as—1+1 m=am-1+1
n-1 m-1 [ as ] n-1
+ ) D Dok Jd Bl D ke |dna Gy + Kner) [Easiam <n—2)
m= s=1 | \I's=as-1+1 Im=am-1+1

as n-1
(_1)m{ Z krs s }< Z krm dn—lkndnkn+1 [E14—; Ap-1 SNn— 2]
'm

I
—
1
N
o
Q

m=1 s=1 | \I's=as-1+1 =am-1+1
n-2 m as n-1
+ ) {0 D ke | DL K+ Ka+ Kner | [Ergian <n—2]
m=0 §:1 | rs=as_q1+1 'm+1=am+1
n-2 m [ as
DR IGR D ey | day fCndnknin) H[Ergiam < n—2]
m=0 §=1 | rs=as—q1+1

In E16 the dummy variable m is dropped by 1 to give Ezo. Also, Eas is re-written as Eiz, E14 is re-written as Eis, and Eis is re-
written as E1e. Hence, the following

n-1 m-1 as n-1
av= M I D ke P D) ke | dekne ([Brian g <n—2]
m=1 s=1 | \I's=as—1+1 m=am-1+1
n-1 rril [ as i
+ z (—1)m Z Ke, | da |t [E17i@mes S0 =28 =0 —Lag; =n+1,dyy, = 1]
m=1 s re=ag_q1+1
n-1

g

3
I
_

=1 rs=as—1+1

m+1 [ as

7
N

s da\S [Eig;am Sn—2,ap4; =n+1,dyy =1]

+
g

(D" >k

«© -

m+ as
{(_1)m Z krs das [E18; am-1 SN—2,a, =n~— 1:am+1 =napy; =0+ 1, dn+1 = 1]

m=0 =1] rs=as—q1+1

n-1 m-1 as
3 I D ke | dapkndakni) P[Eaian 1 <n—2]
m=1 s=1 rg=ag—q1+1

From here on, the constraint d,,,; = 1 is assumed.
E12 and Ex are now added together to give Ezs, as the following shows: E;, + E,q

n-1 m-1 [ ag 1 n-1
= Z (_1)m Z krS das krm dnkn+1 + kndnkn+1 [E21; ap-1 =N — 2]
m=1 §=1 | rs=as—1+1 ] 'm=am-1+1
n-1 m-1 [ ag ] n-1
- (—1)m Z Ky, | da, Z K +Kn |dknss | ¢ [Eagiamey <n—2]
m=1 s=1 | \I's=as-1+1 ] 'm=am-1+1
n-1 m-1[ as ] n
= (_1)m Z krs das Z krm dnkn+1 [E21; ap-1 =N — 2]
m=1 §=1 | rs=ag—1+1 ] 'm=am-1+1
n-1 m+1 [ ag
= (-1™ Z ke, |dag| ¢ [E2i;@m-1 SN —2,ap =N,y =n+1]
m=1 s=1 | \rs=as-1+1
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Note that the assumed constraint “am <n” is no longer applicable and is replaced with “am<n”.

Hence, v = St { (D)™ T2 (S8, o1 Ky ) da [} Espiamoa S n = 2.am =n = Lap =n+1]
-1 m+2 [ as
(D" >k

rs=as—1+1

=]

s [Eigiam-1 Sn—2,an =n—1ayn4; =nap,; =n+1]

|
(=9
&

3
I
=y
1%]
-

as

(D" >k

5
[\S]
iu

+
g
|

mD"

. [Eig;am <n—2,ap41 =n+1]

m=0 §=1 | rs=ag—1+1
n-1 m+1 [ as

+ (™ Z ke, |dag| ¢ [E21;@m—1 SN —2,apm =N,y =0+ 1]
m=1 s=1 | rs=as—1+1

The following are now being performed.

Ei7 is split as E2, (the summand corresponding to m = n-1) plus Ez3 (the remaining summands).
The dummy variable m in Eig is dropped by 1 to give Eo..

E19 is split as Ezs (the summand corresponding to m = 0) plus Exs (the remaining summands).

Hence, v = ¥4 {(—1)m [1mAt [(er—as 41 krs) das]} [Ezi;amey <n—2,ap, =n,ap, =n+1]

+(=D"" 11_[ rS das [Ezz;ap2 <n—2,a, 3 =n—1Lla,=n+1]
rs=ags— 1+1
m+1 [ as ]
+Z (—1)m1_[ Z Keo |dag| ¢ [E2358m_1 SN —2,ap =n—1lap,; =n+1]
m=1 s=1 | rs=as—1+1 |
m+1 [ as
+ Z (™ 1_[ Z ke, |dag| ¢ [E24s@m—2 <N —2,a_; =n—1,a, =nap;; =n+1]
m=2 s=1 | rs=as_q1+1
1 as
1_[ z krS daS [Ezs; a; =n + 1]
s=1 | \I's=as—1+1
n-2 m+1 ag
+ ) dEpm 1_[ Z ke, |da, | [Bosiam <0 — 2,8y =n+1]
m=1 s=1 rs=ag—q1+1

The following are now being performed.

E21 is split as Ez7 (the summand corresponding to m = 1) plus Es (the remaining summands).

E24 is split as E3o (the summand corresponding to m = n) plus Es; (the remaining summands).

E2s (with am = n-1) and Ez (with am < n-2) are merged together to give Ezg (with am < n-1). Note that this merger is possible
because the constraint “a,,; = n 4+ 1” is common to both and also in Ez3 “a,,_; < n — 27 is effective. If in Ezs, a,,_; has a
smaller maximum value, then this merger would not be possible.

Hence, v = — 12, [( e ag. 1+1krs) das] [E;7;a; =n,a, =n+ 1]

m+1 as

+ Z -n" 1_[ Z krs da\S [Ezgi@m-1 SN — 2,8 =N, apyy =0+ 1]
rs=as—q1+1
+( 1)n 11_[ rs das [EZZ;an—ZSn_zfan—lzn_lian=n+1]
rg=ag—_ 1+1
m+1 as
+z (- 1)m1_[ Z Ke, | da, |t [Ezoiam S0 —1ags; =n+1]
rs=as—q1+1
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n+1 as
+(-D" 1_[ Z Kr, |dag [[E3p;@n-2 <n—2,a,; =n—1,a, =n,a,. =n+1]j
rs=as—1+1
m+1 as
+ Z (™ 1_[ Z Ko Jdag [ [Essam-z Sn—2,an_ 1 =n—-1a, =nay,; =n+1]
rs=ag—1+1
as
+ n Z krs das [Ezs; d; =1 + 1]
rg=as—1+1

Ezs (with am-1 < n-2) and Ez; (with am-1 = n-1) are merged to give Es; (with am1 <n-1).
In the summand of Ezg, when m = n-1, Ey; is obtained. Therefore, Exg and Ez, are merged to give Ess.

SV=- HI s |dag|[Ez75a; =m,a; =n+1]

rs—aS 1+1
n-1 m+1 as
+ Z (—1)m | | Z Ky, |dag| ¢ [Esz;am-1 Sn—1,ap =n,ap =n+1]
m=2 s=1 | rs=as_q1+1 ]
n-1 m+1 [ as

+ (=™ 1_[ Z Ko |dag| ¢ [Eszsam <n—1lap, =n+1]

m=1 s=1 | rs=as—1+1
n+1 as
+(-1)" 1_[ Z ke, |dag|[[Espsan- <n—2,a,_4y =n—1,a, =n,a,,; =n+1]
rs=as—q1+1
1 as
+ n Z krs das [Ezs; d; =1 + 1]
= rg=ag—1+1

Ess is split as Ess (the summand corresponding to m = 1) plus Ess (the remaining summands), resulting in

1_[[ Kr, |dag | [Ez7;20 = n,a, =n+ 1]

rg=ags—1+1

n-1 m+1 ag
+ Z Gk 1_[ Z krs daS [Esz;am-1 <n—1lap =nany; =n+1]

m=2 s=1 rs=as—q1+1

2 as

—ﬂ Z ke, | da, |[Essiay <n—1a, =n+1]

s=1 rg=as_1+1

n—-1 m+1 ag
+ (=™ 1_[ Z Ko |dag| ¢ [Essiam <n—1lap =n+1]

m=2 s=1 | \Is=as-1+1

n+1 as
+(-D" 1_[ Z k. |da | [Espsan- <n—2,a,_y =n—1a, =n,a,,; =n+1]
rs=as—q1+1

1 as
2w

s=1 rs=as—1+1

das [Ezs; a; =n + 1]

S

E»7 (with a; = n) and Ess (with a; < n-1) are merged to give Ess (with a; < n).
Es2 (with am = n) and Ess (with am < n-1) are merged to give Es7 (with am <n).

dag | [Eze;a; < nja; =n+1]

== >
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m+1 as

n-1
+ Z =™ 1_[ Z krS daS [Es7;am < nm,apmy; =n+1]
m=2

s=1 rs=ag—1+1

n+1 as
+(—1)“1—[ Z krS d‘,le [Esp;ap— <n—2,a,_4 =n—1,a, =n,a,;; =n+1]
s=1 rs=as—1+1
1 as
+ n Z krs das [Ezs; d; =1 + 1]
s=1 rg=as—1+1

Note that the assumed constraint of “0 =ag<ai;<... <am<n” and “d,,; = 1” together with “a,,,; = n + 1” (from E3;) can
be merged into “O =ap<a1<...<am<amn=n+ld,,, =17

In the summand of Es7, when m =0, 1, and n, the following are obtained: Ezs, Ess, and Eso, respectively.

n m+1 as
:.v=z (-pm —[ Z ke, |dag|([0=2p<a; < <aym <apy =n+1,dyyq =1]
m=0 s=1 | \rs=as_1+1
n ( m+1 ( as w \
SREN) > okl
m=0 s=1 rs=as—q1+1
| \0=3p<a;<<am<am+1=n+1,dn4+1=1

This expression for v is the same as for K., except that n has been replaced with n+1. This concludes the proof of the formula
for the Object Focal Length of a system of n lenses.

F. Proof that Object Power Equals Image Power
The object power of a system of n lenses is given by

A

n-1 m+1 ag ]

Ky, dy, Ky, Ay o g, g k) = 3 4 (=D ] > ke, |da,
m=0 s=1 rs=ag—1+1

0=ap<a;<-<am<am+4+1=n;dp=1
By interchanging dr and dn.r, ¥V r € [1,n-1], and by interchanging k; and kn+1r, ¥V 1 € [1,n], in the expression for
K, (ky,dy, ks, ds, .., k), we will get the formula for the image power, say v.
Note: to simplify the algebra, do (just like dy) is defined to be 1; and the interchanging of d, and dn.r will be done ¥ r € [1,n],
instead of V r € [1,n-1]. Therefore, the image power of the system is given by v = K, (k,, d,_1, Kn_1, -, dz, Ky, dq, Kq).

n-1 m+1 as

[ E m| | §

S V= (_1) kn+1—rS dn—as
m=0 s=1 rs=ag_1+1

0=ag<a;<-<am<am4+1=n;dp=1

In the expression for v, changing dummy variables from the r’s to t’s via tm+2.s = N+1-rs gives
) '

n m+1 nN—ag—1

V= o™ 1_[ Z ktm+2—s dn—as

s=1 tm42-s=n+1-as

| \ 0=ap<a;<-<am<am+1=n;dp=1

Changing variables from the a’s to b’s via bm+1s = N-as gives
p )

|
[N

3
Il
o

m+1 bm+2-s

n-1
V= Z (_1)m 1_[ Z ktm+2—s dbm+1—s
m=0

s=1 tm+2-s=bm+41-s+1
| \ 0=by<by <-<bm<bms1=n;dn=1
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Changing the dummy variable from s to x via x = m+2-s gives

m+1 bx

V‘Z o] ] D Ky [do.,

ty=byx_1+1
0=bg<b;<-<bm<bms1=n;dn=1

n-1 { m+1 ( bx w 1
o] > ktx/ [do, dp, - dp,,_,do_ ]

m=0 x=1 tx=bx_1+1
0=bo<b;<:<bym<bmt+1=n;dp=1

Now, bo =0 and do = 1. sdp, =1
Also, bns1=n and h=1 ~dy,,, =1

n-1 m+ by
( 1)m1_[ ( Z ktx) [do, -dy_ dy dy ]

m=0 x=1 ty=bx—1+1
0=by<b;<<bm<bm41=n;dp=1

|

= yn-1 {( 1)m m+1 [(th—bx 41 ktx) dbx]}; i.e. the object power
0=by<by<--<bm<bm41=n;dp=1

Thus: image power = object power, and this common value is called the power of the system.

Hence: K, (K,, dp_1, Kp_q, -, dg, Ky, dy, k) = K (K, dyg, Ky, dg, o, Kpoq, dp—q, k) with do = di =

That is, if the first lens and the last lens were to interchange positions, the second lens and the second to last lens were to
interchange positions, etc., then the power (and focal length) of the system remains unchanged.

V. GENERALIZED FORMULAS FOR h1 AND h;

A. Notation Used

The diagram below shows a system of n lenses.
The following notations are used
= the image focus is denoted by I
= the second principal point is denoted by Hn2
= the focal length is Fy (the distance In2Hn2)
= the distance between L, and Hn 2 (i.e. DHy2) is denoted by hn.
= the distance between L, and Hn1 (the first principal point; not shown in the diagram) is denoted by hy 1
Note that hn1 and hy2 are the generalized versions of hy and hy, respectively.
With L, being absent, i.e. we are dealing with a system of n-1 lenses, the corresponding points and lengths are denoted by
n being replaced with n-1.

Diagram 3

B. The Formulas

Without Ly, an infinitely distant object has its image at I..12. Therefore, a virtual object at In.12 will have its real image
(under refraction by L, acting alone) at In .
Thus:
. the object distance, u = -(Dln.lvz) = -(Hn.1,2|n,1‘2 - Hn,l‘zD) = -(Hn.1'2|n.1,2 — {Hn.l,ZC + CD}) = -(Fn.l - hn.lyz - dn.l)
= the image distance, v = Dln2 = Hn2ln2 - Hn2D = Fq - hi2
Using % + % = % (with L, acting alone), gives
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1 1 1 1 1 1 1 1

+ =—= = =——
—(Fn-1-hpn-12-dn-1) Fn-hnz fy Fn-hp, fn  Fpoi-hpgp-dp-1  fn dn-1-(Fn-1- hn-12)

1 .
= Fn - hypp =1 T , arecurrence relation for F, - h,, e )
fn dn-1-(Fn-1— hn-1,2)
_ 1 _ 1 : .
= hyp = Fp — 1 T = Fp—1— T [using_equation (1)]
fn dn-1-(Fn-1- hn-1,2) 7 dp_q- n 1 "

fn—1 dn—2—(Fn—2 - hn—22)

1 .. .
= Fp,—1— T [Note: for a system consisting of a single lens, h11 =h;2=0.]
o dpoy-— 1
fn-1~ :
dz-— 71—
R di-f
. _ 1
Hence: hy, = Fy —1— T
fn dn-1-—7 ! 1
-1 T
dg-r—71—
fdi-f1

By interchanging d and d.r and interchanging f: and fy+1.r, ¥V r € [1,n], in the expression for hn 2, we will get the formula for
hn,]_.

Hence: hy; = Fy —1— T
f1 di-7 . 1

f2

1
dn—2 - 1

1
fn—1 dn-1-fn

V. GENERALIZED GAUSSIAN LENS EQUATION

A. Notation Used

Let the distance between
= anobject and the first lens be u
= the image and the last lens be v
= the first lens and the first principal point be hn1
= the last lens and the second principal point be hp
Note that for a system of 2 lenses (n = 2), hy1 is the same as hy, and hy 2 is the same as h..

B. Lens Equation
1 1 1

The generalized Gaussian lens equation is :
u+hpq v+hp Fn

This formula will be proved by mathematical induction; with the last lens L, being replaced with L™ and Ln+1.
The result is true for n = 1 (where hy1 = hy2 =0).

It is also true when n = 2 (a standard result).

The diagram below shows an object O and its image | formed by a system of lenses.

‘ "-7;—;:_.
[e] A B Cc D E F G 1
L1 La-1 L'n Lo Lot
Diagram 4
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Initially, there were n lenses; L™ and Ly+1 were not present.
Ln is then replaced with an equivalent system of 2 lenses, L™, and Ly+1, meaning that
= if L', and Ln+ are separated by a distance of d, apart, and ki, k'n, and kn.1 are the power of Ly, Ln, and Liss,
respectively, then

s k, =k + kyyy — K ndyknyq; Or in terms of focal length — = = + - — 90
B k fn  fn  fa+r fnfnea
. _ fnfnyr
Thatis f, = ot d 2) \
.. . . dnk dpf
= L, is positioned at a distance of = nontl ——nn from and to the left of where L, was
n ISP . kn+ kn+1— Kndnkn+i fntfat1— dn) "
That is DE = —nfn 3)

fnt+fny1—dn
= the focal length of the new system of n+1 lenses is equal to the focal length of the old system of n lenses
= the position of the image focus G remains unchanged
= the position of the image | remains unchanged

The idea of the above is to simplify the algebra required to show that if

1 1 1., . .ge R
= —" is true for a specific value of n, say when n = ¢, then the formula is also true when n = c+1.
u+hpq v+hp, Fp

The following notations are used (before the replacement of L, with L™, and Ln+1)
= The distance between
= objectand L; (i.e. OA) =u
= imageand L, (i.e.El)=vVv
= first principal pointand L1 = hp1
= second principal point and L, (i.e. CE) = hn2
* Lpiand Ly (i.e. BE) =dns
=  The focal length of the system (i.e. CG) = F,
The following notations are used (after the replacement of L, with L™, and Li+1)
»  The distance between
= objectand L; (i.e. OA) =u
» image and Ly (i.e. FI) =V

V' =Fl=El-EF =El - (DF - DE) = v — d,, + — " [using equation (3)]
n 1~ Un
dnfpn

Thatisv=v' + d, - —22— - (4)
fn+fhy1—dn
= first principal point and L1 = h's11

= second principal point and Ln+1 (i.e. CF) = h'ns12
h'n12=CF=CE+EF=CE+ (DF -DE)=h,, + d, —

dnf n 5)

fn+ fne1—dn

113

dnfpn
f+ fnpr—dn

[using equation (3)]

Tha.t iS h‘n+1’2 = hn‘z + dn -
u Ln-l and L\n (ie BD) = d‘n-l
dw1=BD=BE-DE=d, , — —an

fn+fnt1—dn

[using equation (3)]
Thatisd,_; = dpq + f\% ....... (6)

nt fn+1—dn
=  The focal length of the system (i.e. CG) = F'ns1 = Fyy
With the above arrangement in place, it will now be shown that hy1 = neas
1

hn,1= Fp—x T

1
dl_l_ 1
fa -

f1

1

1
dpn-2 - 1

1
fn-1 dn-1-fn

= Fp—1 : [using equation (6) and equation (2)]

1

1
dn-2- 1 1

(e - -
n (dn_1+ __dnfy )_( fnfntq )
fn+fny1—dn fn+fny1—dn
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= Fp—1— 1 = Fp—1— T
1 1
f1 di-7 1 f1 di-7 1
P - [ -
1 1
dn—Z_ 1 1 dn—Z_ 1 1
fh-1 . . dp —f; fn—1~
el ) .
n+fn+1—dn . 3
dp-1+ fp| ————
n-1 n fn .
dn - fnt1
1 1
= Fp—1— T = Fp—1— T
1 1
f1 di-7g 1 f1 di-71 1
1 1
dn—Z_ 1 N 1 dn—Z_ 1 N 1
fn-1 \ fn-1 / \
N . 1 . N 1
dn-1-fn . dn-1-fn T
1——1tn fn_ n
dn - fn+1 fn 9n-fn+1
1 N
=Fn_i_ T =hhi1a
f1 di-7 11
2 1
1
dn-2-—7 1

fn-1 4 1
nmlodpog-— 1

fn  dn-fn+1

The fact that hn1 = h™+11 sShould not be surprising, since the object focus and the (object) focal length remain unchanged
when L, is replaced with an equivalent system of two lenses, L™, and Lnsi.
1 1 1

Now, for the inductive step of the Mathematical Induction, assume that + =—
u+hpq v+hp, Fn

dnfn

Since hp1 =h'h1, v =v' + d, — ————— [equation (4)], and F, = F n+1, this implies that
fn+fne1—dn
1 1 1
u+hpigg . ____dnfn " Fn
n v +dp Fot fori—dn + hp o n \
1 1 . dpf .
- - =——since h’ = h,, + d, — ——==— [equation (5)]
u+hpyss Vi +hnpyiz Fntr n+1,2 n.2 n fntfhri—dn
. . . 1 1 1 - .
Dropping the dashes, for convenience, gives + = ; 1.e. the same assumed formula except that n is

u+hptqr V+hpyaz " Fnaa
replaced with n+1.

1

Thus: the formula —— + = is true for all positive integer values of n.

u+hpq v+hp, Fn

VI. OTHER FORMULAS

Fn _ Fn—hpp—dn _ hpp+dn _ fh+1

In this section, the following is proved:

Fn+1  Fn+1— hn+12 hnt1,2 fn+1 + hn+1,2 — Fn+1

The diagram below shows a ray of light, parallel to the principal axis of a system of n+1 lenses, being refracted by the
system to go through H, the image focus of the system. Without L,.1, the ray would have gone through I, the image focus of
the system of the preceding n lenses.

A B
- _‘—f“)::;;._s\
- "o 7T El F G H —= [
La L
Diagram 5
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P . BF FH FH F,
BFH and CGH are similar triangles. Hence: — = — = = o+l
CG GH FH-FG Fpi1- hpyao
. - AD DI DI DI F,
ADI and CGl are similar triangles. Hence: — = — = = = n
CG GI DI-DG DI-(DE+EG) Fn— hpz—dn
BF _ AD Fns1 _ Fp

BF = AD. Hence: —
CG CG  Fpny1—hpy12  Fn—hpp-dp

Fn—hpp—dn _ Fp

=t 7

Fnt1— hny1z Fnp (7)
Contlnumg: (Fn - hn,Z - dn)Fn+1 = (Fn+1 - hn+1,2)Fn = (hn,z + dn)Fn+1 = hn+1,2Fn

hp 2+ dp Fn

—_—r == mmmdaaa 8

hpy12 Fnt+1 ( )

i 1
Recall equation (1): F, - hy, = 1 .
fn dn—1-(Fn—1- hp-1,2)

> 1. L - 1 1 1 _ Fn-hpo—fy

Fn-hpn2 fn dn-1—(Fn-1- hp-12) dn1i-(Fn—1- hn-12)  fn  Fn-hnz  fo(Fn-hp2)

dn-1—Fp—1+ hp_1 — fn = (by increasing n by 1) dp — Fp+ hpo — fn+1
Fn-hp> Fn-hpp-fn Fn+1- hnt12 Fn+1-hnt12 — fn
Fn— hnp—dn _ fn+1 9)
Fn+1- hnt12 fn+1+ hnt+12 — Fnt+1
Fn _ Fn—hpp—dn _ hpp+dn _ fh+1

Hence, from equation (7), equation (8), and equation (9):

Fn+1  Fn+1— hnta2 hpt1,2 fn+1+ bnt+12 — Fnt+1

In the above result, if dr and dn+1.r are interchanged V r € [1,n], and if f; and ..o are interchanged V r € [1,n+1], then hn will

have to be replaced with h, 1 and hns12 Will have to be replaced with hpa 1
Hence: Fn _ Fn—hpi-ds — hpi+dy _ f1

= = where
n+1  Fn4+1— hnt11 hnt1,1 f1+ hnt1,1 — Fngs

=  Fyis the focal length of the system of lenses where the L; is absent
= hpg is the distance between the first principal point and L, (with L; being absent)

Note the following (which will be used in the next section):

dnt hnz~Fn _ hnsaz=Fnyn (10)
fn 1inhn+12 — Fna1 1:n+11
" e TR T (11)
VII. TRANSVERSE MAGNIFICATION FORMULA
The transverse magnification M, of a system of n lenses is given by M, = % - 1.

This will be proved by the method of Induction.
The formula is trivially true when n =1, since h12 = 0.

Also, the formula is a standard one when n = 2.

v +hp

For the inductive step, assume that M,, = — 1 and consider the following situation.

The diagram below shows an image .1 produced by an object O under the effect of a system of n+1 lenses (only the last 2
lenses are shown).

Without Ln+1, O would have produced the image In, and in this case, the image distance v = Al, in the assumed formula

__ VvV +hp, _
M, = - 1.
o "‘ ‘B Iner I
L Lo+t
Diagram 6
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A virtual object I, produces a real image In+1 under refraction by L1 (alone)

For this single lens case,
= the object distance, u = -Bl, (the negative sign is because of the virtual object) = -(Al, — AB) = -(v —d»)
*= The image distance v’ = Blns1

. 1 1 1 . 1 1 1 1 1 1 f, -'v v f]
Using “= 4+ = = " gives +== ==—-——=" _—avy-d,=—=
g u v f g -(v-dn) V' fh41 (v-dn) v' fny1 v fnt1 R
v f
sv=d, +—%~ e (12)

fny1 -V
Since magnification is multiplicative, it means that M,,,; = M, (—{fL - 1}); note the negative sign because of the virtual
n+1
object.

aMpp, = — (% - 1)( vo_ 1) =— (W - 1) (f:i - 1) [using equation (12)]

fns1

Fn fnt1 (fn+1 = "V)Fn fnt1

{dn+hno}fnt1 = VI +V fngq
= — (fn+1 —"v) 1 (v‘— fn+1) __ ({dn‘*' hn 2 fns1 — 'V} 4V Frps — (Fnsr — V)Fn ) (v‘— fn+1)

— {dn+hpo— FpHfner = VI+Vingq — {dn+hno— Fp}fnes — v} + V_ — (dn+ hp - Fn) (1 _ v ) + \4

fni1Fn fn+1Fn Fn Fn friq Fn
h -F v \4 . . h -F h -F A4
— ( n+1,2 n+1) (1 _ ) + < [using equation (10)] = “nt22=Fne1 _ (hn+12 — Fn+1) + X
Fnya fn+1 Fn Fn+1 fnt+1Fn+1 Fn
= Moz “Fues  Qoeiz—FanV V4 V4 Y aqding and subtracting ——]
Fni1 fn+1Fnts Fnt1  Fntr Fn Fnt1

h -F h -F + f) g g g h -F g g g . .
_ Mn+12-Fn+s  (hnsaz — Fnya + fnia)V + Y 4 Y b= Faen VvV VO :_ [using equation (11)]
n

Fn+1 fn+1Fn+1 Fny1  Fn Fn+1 Fn  Fn41
_ Dn+12—Fns + V. _ Vithniap 1
Fn+1 Fn+1 Fn+1
. . . +h L .
Dropping the dash, for convenience, gives M, ,, = VF& — 1. This is the same formula for My, except that n is replaced
n+1

with n+1. The induction step is completed.

VIII.  CONCLUSION

In a system of n thin coaxial lenses let
= the distance between
= anobject and the first lens be u
= the image and the last lens be v
= the first lens and the first principal point be hn1
= the last lens and the second principal point be hy
= the distance between the r'" lens and (r+1)" lens be d,
= the focal length of
= ther"lens be f
= the system be Fy
= the transverse magnification be m

The following formulas are valid

1

— y'n-1 +1 a 1 ;
. = Yoy {(—1)m 1o [( a1 F) daS”, where, for a fixed value of m, all
0=ag<a;<-<am<am4i=n;dp=1 °
combinations of values of the a’s (satisfying the condition “0 =ag < a1 <... < am < am+1 =n") are taken in the inner sum.
1

- hn,2= Fhp—1 T

E_

1

dn-1-—7 1
fn—1 R T
PP —
f2 di-f1
1
" hnl = Fn— T_ 1
fi - 1 5 1
g7 1
dn-2-—7 ! 1
fn—1 dn-1-fn
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System of N Thin Coaxial Lenses

. 1 11
u+hpg  v+hpy - Fn
v +h
[ an —"'2_1
n
Fn _ Fn—hpp—-dn _ hpp+dy fnt1

Fn+1  Fnt1- hnt12 hpt1,2 fn+1+ hnt+12 — Fn+1
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