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System of N Thin Coaxial Lenses 

M. I. Karimullah

Abstract: In geometrical optics, in a system of two thin coaxial 

lenses, there are several standard formulas, including “
𝟏

𝑭
=

𝟏

𝒇𝟏
+

𝟏

𝒇𝟐
−

𝒅

𝒇𝟏𝒇𝟐
”. The purpose of this paper is to generalize these 

formulas to the case of a system of an arbitrary number of thin 

lenses. In particular, this paper proves that the focal length Fn of 

a system of n thin coaxial lenses is given by 
𝟏

𝑭𝒏
=

∑ {(−𝟏)𝒎∏ [(∑
𝟏

𝒇𝒓𝒔

𝒂𝒔
𝒓𝒔=𝒂𝒔−𝟏+𝟏  
𝟎=𝒂𝟎<𝒂𝟏<⋯<𝑎𝒎<𝒂𝒎+𝟏=𝒏;𝒅𝒏=𝟏 

)𝒅𝒂𝒔]
𝒎+𝟏
𝒔=𝟏 }𝒏−𝟏

𝒎=𝟎 , 

where, fr is the focal length of the rth lens, and dr is the distance 

between the rth lens and (r+1)th lens. For a fixed value of m, all 

combinations of values of the a’s (satisfying the condition “0 = a0 

< a1 < … < am < am+1 = n”) are taken in the inner sum. 

Keywords: coaxial lens system, focal length, Gaussian lens 

equation, magnification formula 

I. INTRODUCTION

In this article, the term “lens(es)” is taken to mean “thin

lens(es)”. The diagram below shows a system of n lenses, in 

which the rth lens is denoted by Lr. A ray of light AB, 

parallel to the principal (or optical) axis XY of the system, is 

refracted at B by the first lens, L1, and emerges along BC. 

The ray is then refracted by subsequent lenses (of which 

only Ln is shown) and finally emerges from the system 

along EF to intersect XY at F. AB and EF intersect at D and 

DH is perpendicular to XY. 

The following are some (established) definitions. 

▪ F is called the image focus (or rear focal point or

back focal point) of the system.

▪ H is called the Image Principal Point (or image unit

point or second principal point or second unit point)

of the system.

Manuscript received on 19 July 2024 | Revised Manuscript 

received on 27 July 2024 | Manuscript Accepted on 15 October 

2024 | Manuscript published on 30 October 2024.  

*Correspondence Author(s)
Mohamed Imteaz Karimullah*, Burlington, Ontario, Canada. E-mail: 

moh_imt_kar@hotmail.com, ORCID ID: 0009-0008-7847-3429 

© The Authors. Published by Lattice Science  Publication (LSP). This 

is an open access article under the CC-BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

▪ The distance between HF is called the image focal

length of the system.

If the ray of light AB were to travel in the opposite direction 

(i.e. from right to left) and intersect Ln first and finally 

emerge from L1, then there would be a corresponding  

▪ object focus (or front focal point) of the system

▪ object principal point (or object unit point or first

principal point or first unit point) of the system

▪ object focal length of the system

The reciprocal of the object focal length is called the

object power of the system. Similarly, the reciprocal of the 

image focal length is called the image power of the system. 

For a single lens and a system of two lenses, it has been 

established that the value of the object focal length and the 

value of the image focal length are the same. 

II. SYSTEM OF 2 LENSES

The following notations are used in the formulas below for 

a system of two lenses. 

▪ The power of

▪ the first lens is k1

▪ the second lens is k2

▪ the lens system is K

▪ The focal length of the lens system is F

▪ The distance between

▪ the lenses is d

▪ the first principal point and the first lens is

h1

▪ the second principal point and the second

lens is h2

▪ an object and the first lens is u

▪ the corresponding image and the second

lens is v

▪ The transverse (or linear) magnification is m

The following are well-known formulas for a system of 

two lenses [1]. 

▪ K = k1 + k2 − dk1k2

▪ h1 =
dk2

k1+ k2− dk1k2

▪ h2 =
dk1

k1+ k2− dk1k2

▪
1

u + h1
+

1

v + h2
= 

1

F

▪ m =
v + h2

F
− 1

From the above formulas, if a system of two lenses 

▪ of power k1 and k2

▪ and separated by a distance d apart

is replaced with a single lens

▪ of power k1 + k2 − dk1k2
▪ and positioned between the two lenses at a distance

of h2 from the second lens
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then, the usual formula "
1

U
+

1

V
= 

1

F
" holds, where  

▪ F is the focal length of the replacement lens 

▪ V is the distance between the image and the 

replacement lens 

▪ and U is the distance between the object and the 

first principal point. 

This paper generalizes the above formulas to the case of a 

system of n lenses. Also, other results are established.  

III. GENERALIZED FORMULA FOR THE 

OBJECT POWER 

A. Notation Used 

The following notations are used for a system of n lenses. 

▪ The rth lens is Lr 

▪ The distance between Lr and Lr+1 is dr 

▪ The focal length of the rth lens is fr  

▪ The power of the rth lens is kr  

▪ The (object) power of the lens system is Kn 

B. Small Values of n 

The formula for K2 is derived using the equation 
1

u
+

1

v
=

1

f
  

together with a real image (considered a virtual object) and 

similar triangles. The formula is given by K2 = k1 + k2 −
 k1d1k2 = [k1 + k2] − [(k1)d1(k2)] 

By using this very method (i.e. virtual object and similar 

triangles) with three lenses (L1, L2, and L3) the formula for 

K3 can be obtained. Alternatively, the formula for K3 can be 

obtained as follows.  

L1 and L2 are replaced with a single equivalent lens, say 

L12, so we are now dealing with 2 lenses, L12 and L3. As 

mentioned above, L12 is of power K2 = k1 + k2 − d1k1k2 

and is positioned between L1 and L2 at a distance of 
d1k1

k1+ k2− d1k1k2
 from L2. Thus, the distance D between L12 and 

L3 is given by D = d2 +
d1k1

k1+ k2− d1k1k2
. 

Hence: K3 = K2 + k3 − DK2k3 

= K2 + k3 − (d2 +
d1k1

k1+ k2− d1k1k2
)K2k3  

= (k1 + k2 − d1k1k2) + k3 − (d2 +
d1k1

k1+ k2− d1k1k2
) (k1 +

k2 − d1k1k2)k3  

= (k1 + k2 − d1k1k2) + k3 − (d2{k1 + k2 − d1k1k2} +
d1k1)k3  

= k1 + k2 + k3 − d1k1k2 − d2(k1 + k2 − d1k1k2)k3 −
d1k1k3  

= k1 + k2 + k3 − d1k1k2 − d2(k1 + k2)k3 +
d2d1k1k2k3 − d1k1k3  

= k1 + k2 + k3 − d1k1k2 − d1k1k3 − d2(k1 +
k2)k3 + d2d1k1k2k3  

= [k1 + k2 + k3] − [(k1)d1(k2 + k3) + (k1
+ k2)d2(k3)]  + [(k1)d1(k2)d2(k3)] 

Similarly, with four lenses the following formula for K4 is 

obtained: 

K4 =   [k1 + k2 + k3 + k4] 
          − [(k1)d1(k2 + k3 + k4) + (k1 + k2)d2(k3 + k4)

+ (k1 + k2 + k3)d3(k4)] 
           +[(k1)d1(k2)d2(k3 + k4) + (k1)d1(k2 + k3)d3(k4)

+ (k1 + k2)d2(k3)d3(k4)] 

          − [(k1)d1(k2)d2(k3)d3(k4)] 

C. Proposed Formula for Kn 

In the formulas for K2, K3, and K4 the terms having the 

same number of factors of the d’s are grouped using square 

brackets. The sum of the terms in the (m+1)th pair of square 

brackets is denoted by Tm.  

 

The following pattern seems to be developing: 

▪ Kn is composed of T0, T1, …, Tn-1. 

▪ The sign preceding Tm is (-1)m. 

▪ Tm is a sum with each summand being a product of 

the following factors: m d’s and m+1 sums of k’s, 

with each sum of k’s enclosed in a pair of 

parentheses, (). 

 Note the following: 

▪ Some of these “sums of k’s” may have only a 

single term. 

▪ In each pair of parentheses, the index of the last k 

(except when not equal to n) equals that of the d 

which follows immediately.  

▪ Each summand has m d factors out of a possible of 

n-1 d’s. Thus, the number of summands in Tm is n-

1Cm (a binomial coefficient). 

 

A typical summand in Tm is 

(k1 +⋯+ ka1)da1(ka1+1 +⋯+ ka2)da2 … (kam−1+1 +

⋯+ kam)dam(kam+1 +⋯+ kn), where the ar’s are 

integers satisfying 1 ≤ a1 < … < am ≤ n-1.  

 

This typical summand 

= {∏ (kas−1+1 +⋯+ kas)das
m
s=1 }{kam+1 +⋯+ kn}, 

where additionally a0 = 0 

= {∏ [(∑ krs
as
rs=as−1+1

)das]
m
s=1 }{∑ krm+1

n
rm+1=am+1

}  

= ∏ [(∑ krs
as
rs=as−1+1

)das]
m+1
s=1 , where additionally am+1 = n 

and dam+1 = 1 (i.e. dn = 1) 

 

For a fixed m, by giving the a’s all possible combinations of 

values satisfying 0 = a0 < a1 < … < am < am+1 = n, all the 

summands in Tm are obtained.  

 

Thus: Tm = ∏ [(∑ krs
as
rs=as−1+1                                                

0=a0<a1<⋯<𝑎m<am+1=n;dn=1 

)das]
m+1
s=1  

 

 Hence: Kn =

∑ {(−1)m∏ [(∑ krs
as
rs=as−1+1                                                

0=a0<a1<⋯<𝑎m<am+1=n;dn=1 

)das]
m+1
s=1 }n−1

m=0  

D. Strategy for the Proof of the Proposed Formula for 

Kn 

This formula will be proved to be the (object) power of the 

system by the Method of Mathematical Induction and by 

employing a strategy explained in this section. 
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Ln will be replaced by two lenses L`n and Ln+1 (with power k`n and kn+1, respectively) that are 

▪ separated by a distance of dn apart, so that the focal length of the system consisting of L`n and Ln+1 is equal to the focal 

length of Ln (meaning that the system consisting of L`n and Ln+1 is equivalent to Ln) 

That is: kn =  k
`
n
+ kn+1 − k

`
ndnkn+1 

▪ appropriately positioned so that the object focal length of the new system of n+1 lenses is equal to the object focal 

length of the original system of n lenses (meaning that the system consisting of the n+1 lenses is equivalent to the 

system consisting of the n lenses) 

 

Ln-1 was at a distance of dn-1 from and to the left of Ln. The distance d`n-1 (between Ln-1 and L`n) will now be determined. 

 

The diagram below shows a ray of light AC, parallel to the principal axis XY of Ln, being refracted at C and then intersects 

XY at F, the object focal point of Ln. 

Ln is replaced with L`n and Ln+1 to maintain the same object focal point (F)  and the same object focal length (HF). 

Therefore, the ray AB is now refracted at B by Ln+1 and is subsequently refracted at D by L`n to pass through F. 

Ln+1, Ln and L`n intersect XY at P, H, and Q, respectively. BD intersects XY at G and DF intersects AB at C. 

 
 

PQ = dn, PG = fn+1 and HF = fn.  

Let HQ = x. 

DQF and CHF are similar triangles. Hence:  
CH

DQ
= 

HF

QF
⇒ CH = DQ

HF

QF
 

DQG and BPG are similar triangles. Hence:   
BP

DQ
= 

PG

QG
⇒ BP = DQ

PG

QG
 

Since CH =  BP ⇒ DQ
HF

QF
= DQ

PG

QG
⇒

HF

QF
=

PG

QG
⇒

HF

HF−HQ
=

PG

PG−PQ
⇒

fn

fn−x
=

fn+1

fn+1– dn
  

 

⇒ fn+1(fn − x) = fn(fn+1 − dn) ⇒ fn+1x = fndn ⇒ x =
fndn
fn+1

=
kn+1dn
kn

=
dnkn+1

k`n + kn+1 − k
`
ndnkn+1

 

 

Hence: in the system of n lenses, if Ln is replaced by L`n and Ln+1, satisfying the following conditions, then the object focal 

length of the new system of n+1 lenses is equal to the object focal length of the original system of n lenses. 

▪ L`n and Ln+1 are separated by a distance of dn 

▪ kn = k`
n
+ kn+1 − k

`
ndnkn+1 

▪ L`n is positioned at a distance of 
dnkn+1

k`n+ kn+1− k
`
ndnkn+1

 from and to the left of where Ln was 

Hence: the distance d`n-1 (between Ln-1 and L`n) is given by 

d`n−1 = dn−1 −
dnkn+1

k`n + kn+1 − k
`
ndnkn+1

 

⇒ dn−1 = d
`
n−1 +

dnkn+1
k`n + kn+1 − k

`
ndnkn+1

 

⇒ dn−1kn = (d
`
n−1 +

dnkn+1
k`n + kn+1 − k

`
ndnkn+1

) (k`n + kn+1 − k
`
ndnkn+1) 

= d`n−1(k
`
n + kn+1 − k

`
ndnkn+1) + dnkn+1 

= dnkn+1 + d
`
n−1(k

`
n + kn+1) − d

`
n−1k

`
ndnkn+1 

 

Hence, if the following replacements are made on the right-hand side of the equation   

Kn = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1                                                
0=a0<a1<⋯<𝑎m<am+1=n;dn=1 )

 
 
das

]
 
 
 
 m+1

s=1

}
 
 

 
 n−1

m=0

 

▪ kn is replaced with k`n + kn+1 − k
`
ndnkn+1 
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▪ dn-1kn is replaced with dnkn+1 + d
`
n−1(k

`
n + kn+1) −  d

`
n−1k

`
ndnkn+1 

then we ought to get the expression for Kn+1. This expression for Kn+1 would be the same as Kn; except that n has been 

incremented by 1. This is effectively the induction step in the Mathematical Induction used immediately below. 

E. Proof of the Proposed Formula for Kn 

The following formula for Kn will now be proved by Mathematical Induction. 

Kn = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1                                                
0=a0<a1<⋯<𝑎m<am+1=n;dn=1 )

 
 
das

]
 
 
 
 m+1

s=1

}
 
 

 
 n−1

m=0

 

 

For the base case, when n = 1,  

K1 = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1                                               
0=a0<a1<⋯<𝑎m<am+1=1;d1=1 )

 
 
das

]
 
 
 
 m+1

s=1

}
 
 

 
 0

m=0

= (−1)0∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1               
0=a0<a1=1;d1=1 )

 
 
das

]
 
 
 
 1

s=1

 

=

(

 
 

∑ kr1

a1

r1=a0+1                    
0=a0<a1=1;d1=1 )

 
 
da1 = 

(

 
 
∑ kr1

1

r1=1  
d1=1  )

 
 
d1 = (k1)(1) = k1 

 

Thus, the formula is trivially true when n = 1. 

 

For the inductive step, assume that the formula is true for n a certain value of n ≥ 1. 

In the below, the square brackets following an expression have the label E# (to identify the expression) followed by the 

applicable constraints [of which “0 = a0 < a1 < ⋯ < 𝑎m < am+1 = 1; d1 = 1” is assumed to be always present until Ln is 

replaced].  

Let the value of Kn be v. That is: v = ∑ {(−1)m∏ [(∑ krs
as
rs=as−1+1 

) das]
m+1
s=1 }n−1

m=0 , where 0 = a0 < a1 < ⋯ < 𝑎m <

am+1 = n; dn = 1 

Splitting v as E1 (the summand corresponding to m = 0) plus E2 (the summand corresponding to m = n-1) plus E3 (the 

remaining summands), gives 

v =∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E1; a1 = n] 

+ (−1)n−1∏[( ∑ krs

as

rs=as−1+1 

)das]

n

s=1

[E2; an = n] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E3; am+1 = n] 

 

In E3, separating out the combinations for am = n-1 (denoted by E4) and for am ≤ n-2 (denoted by E5), gives 

v =∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E1; a1 = n] 

+ (−1)n−1∏[( ∑ krs

as

rs=as−1+1 

)das]

n

s=1

[E2; an = n] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E4; am = n − 1, am+1 = n] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E5; am ≤ n − 2, am+1 = n] 
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Recall the condition: 0 = a0 < a1 < ⋯ < 𝑎m < am+1 = n. 
Therefore: m = n-1 ⇒ ar = r, ∀ r ∈ [0,n]. 

In the summand of E4, when m = n-1, E2 is obtained. Hence, merging E4 and E2 gives E6. 

∴ v =∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E1; a1 = n] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=1

[E6; am = n − 1, am+1 = n] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E5; am ≤ n − 2, am+1 = n] 

 

In E5 if m were to be set equal to 0, the summand becomes (−1)0∏ [(∑ krs
as
rs=as−1+1 

) das]
0+1
s=1 , with a1 = n 

= (∑ kr1
a1
r1=a1−1+1 

) da1 = (∑ kr1
n
r1=a0+1 

) dn = ∑ kr1
n
r1=1 

, since a0 = 0 and dn = 1. This is the same as E1.  

Note that in E5, the condition am ≤ n − 2 is applicable only when m  ≥ 1. When m = 0, am = 0 

 

Hence, merging E5 and E1 to give E7 results in 

v = ∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=1

[E6; am = n − 1, am+1 = n] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=0

[E7; am ≤ n − 2, am+1 = n] 

 

Re-writing E6 and E7 as E8 and E9, respectively, gives 

v = ∑ {(−1)m (∏[( ∑ krs

as

rs=as−1+1 

)das]

m−1

s=1

)( ∑ krm

n−1

rm=am−1+1

)dn−1kn}

n−1

m=1

[E8; am = n − 1, am+1 = n] 

+∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1

)das]} ( ∑ krm+1

n−1

rm+1=am+1

+ kn)

m

s=1

}

n−2

m=0

[E9; am ≤ n − 2, am+1 = n] 

 

Note that, at this stage, the assumed constraints “am+1 = n and dn = 1” have been incorporated; they are no longer needed 

or applicable. Then the assumed constraint that remains is “0 = a0 < a1 < … < am < n”. 

In E8, the constraints am = n – 1 and am+1 = n can and will be replaced with am-1 ≤ n – 2. 

Replacing the constraints gives 

v = ∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]}

m−1

s=1

( ∑ krm

n−1

rm=am−1+1

)dn−1kn}

n−1

m=1

[E8; am−1 ≤ n − 2] 

+∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1

)das]} ( ∑ krm+1

n−1

rm+1=am+1

+ kn)

m

s=1

}

n−2

m=0

[E9; am ≤ n − 2] 

 

Ln is now replaced by L`n and Ln+1, to have the value v be unchanged.  

That is: kn is to be replaced with k`n + kn+1 − k
`
ndnkn+1, and dn-1kn is to be replaced with dnkn+1 + d

`
n−1(k

`
n + kn+1) −

 d`n−1k
`
ndnkn+1. 

Hence, E8 and E9 become E10 and E11, respectively, as the following shows. 

∴ v = ∑ {(−1)m{∏ [( ∑ krs

as

rs=as−1+1

)das]}

m−1

s=1

( ∑ krm

n−1

rm=am−1+1

)(dnkn+1 + d
`
n−1(k

`
n

n−1

m=1

+ kn+1) −  d
`
n−1k

`
ndnkn+1)} [E10; am−1 ≤ n − 2] 
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+∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1

)das]} ( ∑ krm+1

n−1

rm+1=am+1

+ k`n + kn+1 − k
`
ndnkn+1)

m

s=1

}

n−2

m=0

[E11; am ≤ n − 2] 

 

Splitting up E10 as E12 + E13 + E14, splitting up E11 as E15 + E16 and dropping the dashes in dn-1 and kn, for convenience, gives 

v = ∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]}

m−1

s=1

( ∑ krm

n−1

rm=am−1+1

)dnkn+1}

n−1

m=1

[E12; am−1 ≤ n − 2] 

+∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]}

m−1

s=1

( ∑ krm

n−1

rm=am−1+1

)dn−1(kn + kn+1)}

n−1

m=1

[E13; am−1 ≤ n − 2] 

−∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]}

m−1

s=1

( ∑ krm

n−1

rm=am−1+1

) dn−1kndnkn+1}

n−1

m=1

[E14; am−1 ≤ n − 2] 

+∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]} ( ∑ krm+1

n−1

rm+1=am+1 

+ kn + kn+1)

m

s=1

}

n−2

m=0

[E15; am ≤ n − 2] 

−∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]}( kndnkn+1)

m

s=1

}

n−2

m=0

[E16; am ≤ n − 2] 

 

In E16 the dummy variable m is dropped by 1 to give E20. Also, E13 is re-written as E17, E14 is re-written as E18, and E15 is re-

written as E19. Hence, the following 

∴ v = ∑ {(−1)m{∏ [( ∑ krs

as

rs=as−1+1 

)das]}

m−1

s=1

( ∑ krm

n−1

rm=am−1+1

)dnkn+1}

n−1

m=1

[E12; am−1 ≤ n − 2] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=1

[E17; am−1 ≤ n − 2, am = n − 1, am+1 = n + 1, dn+1 = 1] 

−∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+2

s=1

}

n−1

m=1

[E18; am−1 ≤ n − 2, am = n − 1, am+1 = n, am+2 = n + 1, dn+1 = 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=0

[E19; am ≤ n − 2, am+1 = n + 1, dn+1 = 1] 

+∑ {(−1)m{∏[( ∑ krs

as

rs=as−1+1 

)das]}( kndnkn+1)

m−1

s=1

}

n−1

m=1

[E20; am−1 ≤ n − 2] 

From here on, the constraint dn+1 = 1 is assumed. 

E12 and E20 are now added together to give E21, as the following shows: E12  +  E20 

= ∑ {((−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m−1

s=1

)(( ∑ krm

n−1

rm=am−1+1 

)dnkn+1 + kndnkn+1)}

n−1

m=1

[E21; am−1 ≤ n − 2] 

= ∑ {((−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m−1

s=1

)(( ∑ krm

n−1

rm=am−1+1 

+ kn)dnkn+1)}

n−1

m=1

[E21; am−1 ≤ n − 2] 

= ∑ {((−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m−1

s=1

)(( ∑ krm

n

rm=am−1+1 

)dnkn+1)}

n−1

m=1

[E21; am−1 ≤ n − 2] 

= ∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=1

[E21; am−1 ≤ n − 2, am = n, am+1 = n + 1] 
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Note that the assumed constraint “am < n” is no longer applicable and is replaced with “am ≤ n”. 

 

Hence, v = ∑ {(−1)m∏ [(∑ krs
as
rs=as−1+1 

) das]
m+1
s=1 }n−1

m=1 [E17; am−1 ≤ n − 2, am = n − 1, am+1 = n + 1] 

−∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+2

s=1

}

n−1

m=1

[E18; am−1 ≤ n − 2, am = n − 1, am+1 = n, am+2 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=0

[E19; am ≤ n − 2, am+1 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=1

[E21; am−1 ≤ n − 2, am = n, am+1 = n + 1] 

 

The following are now being performed.  

E17 is split as E22 (the summand corresponding to m = n-1) plus E23 (the remaining summands). 

The dummy variable m in E18 is dropped by 1 to give E24. 

E19 is split as E25 (the summand corresponding to m = 0) plus E26 (the remaining summands). 

 

Hence, v = ∑ {(−1)m∏ [(∑ krs
as
rs=as−1+1 

) das]
m+1
s=1 }n−1

m=1 [E21; am−1 ≤ n − 2, am = n, am+1 = n + 1] 

+(−1)n−1∏[( ∑ krs

as

rs=as−1+1 

)das]

n

s=1

[E22; an−2 ≤ n − 2, an−1 = n − 1, an = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E23; am−1 ≤ n − 2, am = n − 1, am+1 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n

m=2

[E24; am−2 ≤ n − 2, am−1 = n − 1, am = n, am+1 = n + 1] 

+∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E25; a1 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E26; am ≤ n − 2, am+1 = n + 1] 

 

The following are now being performed.  

E21 is split as E27 (the summand corresponding to m = 1) plus E28 (the remaining summands). 

E24 is split as E30 (the summand corresponding to m = n) plus E31 (the remaining summands). 

E23 (with am = n-1) and E26 (with am ≤ n-2) are merged together to give E29 (with am ≤ n-1). Note that this merger is possible 

because the constraint “am+1 = n + 1” is common to both and also in E23 “ am−1 ≤ n − 2” is effective. If in E23, am−1 has a 

smaller maximum value, then this merger would not be possible. 

 

Hence, v = −∏ [(∑ krs
as
rs=as−1+1 

) das]
2
s=1 [E27; a1 = n, a2 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=2

[E28; am−1 ≤ n − 2, am = n, am+1 = n + 1] 

+(−1)n−1∏[( ∑ krs

as

rs=as−1+1 

)das]

n

s=1

[E22; an−2 ≤ n − 2, an−1 = n − 1, an = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−2

m=1

[E29; am ≤ n − 1, am+1 = n + 1] 
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+(−1)n∏[( ∑ krs

as

rs=as−1+1 

)das]

n+1

s=1

[E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=2

[E31; am−2 ≤ n − 2, am−1 = n − 1, am = n, am+1 = n + 1] 

+∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E25; a1 = n + 1] 

  

E28 (with am-1 ≤ n-2) and E31 (with am-1 = n-1) are merged to give E32 (with am-1 ≤ n-1). 

In the summand of E29, when m = n-1, E22 is obtained. Therefore, E29 and E22 are merged to give E33. 

∴ v = −∏[( ∑ krs

as

rs=as−1+1 

)das]

2

s=1

[E27; a1 = n, a2 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=2

[E32; am−1 ≤ n − 1, am = n, am+1 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=1

[E33; am ≤ n − 1, am+1 = n + 1] 

+(−1)n∏[( ∑ krs

as

rs=as−1+1 

)das]

n+1

s=1

[E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1] 

+∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E25; a1 = n + 1] 

 

E33 is split as E34 (the summand corresponding to m = 1) plus E35 (the remaining summands), resulting in 

v = −∏[( ∑ krs

as

rs=as−1+1 

)das]

2

s=1

[E27; a1 = n, a2 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=2

[E32; am−1 ≤ n − 1, am = n, am+1 = n + 1] 

−∏[( ∑ krs

as

rs=as−1+1 

)das]

2

s=1

[E34; a1 ≤ n − 1, a2 = n + 1] 

+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=2

[E35; am ≤ n − 1, am+1 = n + 1] 

+(−1)n∏[( ∑ krs

as

rs=as−1+1 

)das]

n+1

s=1

[E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1] 

+∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E25; a1 = n + 1] 

 

E27 (with a1 = n) and E34 (with a1 ≤ n-1) are merged to give E36 (with a1 ≤ n). 

E32 (with am = n) and E35 (with am ≤ n-1) are merged to give E37 (with am ≤ n). 

∴ v = −∏[( ∑ krs

as

rs=as−1+1 

)das]

2

s=1

[E36; a1 ≤ n, a2 = n + 1] 
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+∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n−1

m=2

[E37; am ≤ n, am+1 = n + 1] 

+(−1)n∏[( ∑ krs

as

rs=as−1+1 

)das]

n+1

s=1

[E30; an−2 ≤ n − 2, an−1 = n − 1, an = n, an+1 = n + 1] 

+∏[( ∑ krs

as

rs=as−1+1 

)das]

1

s=1

[E25; a1 = n + 1] 

 

Note that the assumed constraint of “0 = a0 < a1 < … < am ≤ n” and “dn+1 = 1” together with “am+1 = n + 1” (from E37) can 

be merged into “0 = a0 < a1 < … < am < am+1 = n+1,dn+1 = 1” 

 

In the summand of E37, when m = 0, 1, and n, the following are obtained: E25, E36, and E30, respectively. 

∴ v = ∑ {(−1)m∏[( ∑ krs

as

rs=as−1+1 

)das]

m+1

s=1

}

n

m=0

[0 = a0 < a1 < ⋯ < 𝑎m < am+1 = n + 1, dn+1 = 1] 

= ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1                                                          
0=a0<a1<⋯<𝑎m<am+1=n+1,dn+1=1 )

 
 
das

]
 
 
 
 m+1

s=1

}
 
 

 
 n

m=0

 

 

This expression for v is the same as for Kn, except that n has been replaced with n+1. This concludes the proof of the formula 

for the Object Focal Length of a system of n lenses. 

F. Proof that Object Power Equals Image Power 

The object power of a system of n lenses is given by 

Kn(k1, d1, k2, d2, … , kn−1, dn−1, kn) = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ krs

as

rs=as−1+1                                                
0=a0<a1<⋯<𝑎m<am+1=n;dn=1 )

 
 
das

]
 
 
 
 m+1

s=1

}
 
 

 
 n−1

m=0

 

By interchanging dr and dn-r, ∀ r ∈ [1,n-1], and by interchanging kr and kn+1-r, ∀ r ∈ [1,n], in the expression for 

Kn(k1, d1, k2, d2… , kn), we will get the formula for the image power, say v. 

Note: to simplify the algebra, d0 (just like dn) is defined to be 1; and the interchanging of dr and dn-r will be done ∀ r ∈ [1,n], 

instead of ∀ r ∈ [1,n-1]. Therefore, the image power of the system is given by v =  Kn(kn, dn−1, kn−1, … , d2, k2, d1, k1). 
 

∴ v = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ kn+1−rs

as

rs=as−1+1                                                
0=a0<a1<⋯<𝑎m<am+1=n;dn=1 )

 
 
dn−as

]
 
 
 
 m+1

s=1

}
 
 

 
 n−1

m=0

 

 

In the expression for v, changing dummy variables from the r’s to t’s via tm+2-s = n+1-rs gives 

v = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ ktm+2−s

n−as−1

tm+2−s=n+1−as                                          
0=a0<a1<⋯<𝑎m<am+1=n;dn=1 )

 
 
dn−as

]
 
 
 
 m+1

s=1

}
 
 

 
 n−1

m=0

 

Changing variables from the a’s to b’s via bm+1-s = n-as gives 

v = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ ktm+2−s

bm+2−s

tm+2−s=bm+1−s+1                              

0=b0<b1<⋯<𝑏m<bm+1=n;dn=1 )

 
 
dbm+1−s

]
 
 
 
 m+1

s=1

}
 
 

 
 n−1

m=0
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Changing the dummy variable from s to x via x = m+2-s gives 

v = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ ktx

bx

tx=bx−1+1                                                  
0=b0<b1<⋯<𝑏m<bm+1=n;dn=1  )

 
 
dbx−1

]
 
 
 
 m+1

x=1

}
 
 

 
 n−1

m=0

 

= ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ ktx

bx

tx=bx−1+1                                                  
0=b0<b1<⋯<𝑏m<bm+1=n;dn=1  )

 
 

]
 
 
 
 m+1

x=1

[db0db1 … . dbm−1dbm]

}
 
 

 
 n−1

m=0

 

 

Now, b0 = 0 and d0 = 1.  ∴ db0 = 1 

Also, bm+1 = n and dn = 1.  ∴ dbm+1 = 1 

∴ v = ∑

{
 
 

 
 

(−1)m∏

[
 
 
 
 

(

 
 

∑ ktx

bx

tx=bx−1+1                                                 
0=b0<b1<⋯<𝑏m<bm+1=n;dn=1  )

 
 

]
 
 
 
 m+1

x=1

[db1 … . dbm−1dbmdbm+1]

}
 
 

 
 n−1

m=0

 

= ∑ {(−1)m∏ [(∑ ktx
bx
tx=bx−1+1                                                 
0=b0<b1<⋯<𝑏m<bm+1=n;dn=1  

)dbx]
m+1
x=1 }n−1

m=0 ; i.e. the object power 

Thus: image power = object power, and this common value is called the power of the system. 

Hence: Kn(kn, dn−1, kn−1, … , d2, k2, d1, k1) = Kn(k1, d1, k2, d2, … , kn−1, dn−1, kn); with d0 = dn = 1. 

That is, if the first lens and the last lens were to interchange positions, the second lens and the second to last lens were to 

interchange positions, etc., then the power (and focal length) of the system remains unchanged. 

IV. GENERALIZED FORMULAS FOR h1 AND h2 

A. Notation Used 

The diagram below shows a system of n lenses.  

The following notations are used 

▪ the image focus is denoted by In,2 

▪ the second principal point is denoted by Hn,2 

▪ the focal length is Fn (the distance In,2Hn,2) 

▪ the distance between Ln and Hn,2 (i.e. DHn,2) is denoted by hn,2 

▪ the distance between L1 and Hn,1 (the first principal point; not shown in the diagram) is denoted by hn,1 

Note that hn,1 and hn,2 are the generalized versions of h1 and h2, respectively. 

With Ln being absent, i.e. we are dealing with a system of n-1 lenses, the corresponding points and lengths are denoted by 

n being replaced with n-1. 

 

 

B. The Formulas 

Without Ln, an infinitely distant object has its image at In-1,2. Therefore, a virtual object at In-1,2 will have its real image 

(under refraction by Ln acting alone) at In,2. 

Thus:  

▪ the object distance, u = -(DIn-1,2) = -(Hn-1,2In-1,2 - Hn-1,2D) = -(Hn-1,2In-1,2 – {Hn-1,2C + CD}) = -(Fn-1 -  hn-1,2 - dn-1) 

▪ the image distance, v = DIn,2 = Hn,2In,2 - Hn,2D = Fn - hn,2 

Using 
1

u
+

1

v
=

1

f
 (with Ln acting alone), gives 
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1

−(Fn−1 –  hn−1,2 − dn−1 )
+

1

Fn – hn,2
=

1

fn
⇒ 

1

Fn –  hn,2
=

1

fn
+

1

Fn−1 –  hn−1,2  – dn−1 
=

1

fn
−

1

 dn−1 – (Fn−1 –  hn−1,2)
 

 

 ⇒ Fn –  hn,2 =
1

1

fn
 – 

1

 dn−1 − (Fn−1−  hn−1,2)

, a recurrence relation for Fn – hn,2   -------  (1) 

 

 ⇒ hn,2 = Fn −
1

1

fn
 – 

1

 dn−1 − (Fn−1 −  hn−1,2)

= Fn −
1

1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1

 dn−2 − (Fn−2 −  hn−2,2)

 [using equation (1)] 

⋮ 

= Fn −
1

1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1
⋱

              
1

 d2 – 
1

1
f2
 – 

1
 d1 − f1

 [Note: for a system consisting of a single lens, h1,1 = h1,2 = 0.] 

 

Hence: hn,2 = Fn −
1

1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1
⋱

              
1

 d2 – 
1

1
f2
 – 

1
 d1 − f1

 

 

By interchanging dr and dn-r and interchanging fr and fn+1-r, ∀ r ∈ [1,n], in the expression for hn,2, we will get the formula for 

hn,1. 

 

Hence: hn,1 = Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

 dn−1 − fn

 

 

V. GENERALIZED GAUSSIAN LENS EQUATION 

A. Notation Used 

Let the distance between 

▪ an object and the first lens be u 

▪ the image and the last lens be v 

▪ the first lens and the first principal point be hn,1 

▪ the last lens and the second principal point be hn,2 

Note that for a system of 2 lenses (n = 2), hn,1 is the same as h1, and hn,2 is the same as h2. 

B. Lens Equation 

The generalized Gaussian lens equation is 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
. 

 

This formula will be proved by mathematical induction; with the last lens Ln being replaced with L`n and Ln+1.  

  The result is true for n = 1 (where h1,1 = h1,2 = 0).  

It is also true when n = 2 (a standard result). 

The diagram below shows an object O and its image I formed by a system of lenses.  
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Initially, there were n lenses; L`n and Ln+1 were not present. 

Ln is then replaced with an equivalent system of 2 lenses, L`n and Ln+1, meaning that  

▪ if L`n and Ln+1 are separated by a distance of dn apart, and kn, k`n, and kn+1 are the power of Ln, L`n, and Ln+1, 

respectively, then 

▪ kn = k
`
n
+ kn+1 − k

`
ndnkn+1; or in terms of focal length 

1

fn
=

1

f`n
+

1

fn+1
−

dn

f`nfn+1
 

That is fn =
f`nfn+1

f`n+ fn+1− dn
 ------- (2) 

▪ L`n is positioned at a distance of 
dnkn+1

k`n+ kn+1− k
`
ndnkn+1

 (or 
dnf

`
n

f`n+ fn+1− dn
) from and to the left of where Ln was 

That is DE = 
dnf

`
n

f`n+ fn+1− dn
 ------- (3) 

▪ the focal length of the new system of n+1 lenses is equal to the focal length of the old system of n lenses 

▪ the position of the image focus G remains unchanged 

▪ the position of the image I remains unchanged 

 

The idea of the above is to simplify the algebra required to show that if 

“
1

u + hn,1
+

1

v + hn,2
=

1

Fn
” is true for a specific value of n, say when n = c, then the formula is also true when n = c+1.  

The following notations are used (before the replacement of Ln with L`n and Ln+1) 

▪ The distance between  

▪ object and L1 (i.e. OA) = u 

▪ image and Ln (i.e. EI) = v 

▪ first principal point and L1 = hn,1 

▪ second principal point and Ln (i.e. CE) = hn,2 

▪ Ln-1 and Ln (i.e. BE) = dn-1 

▪ The focal length of the system (i.e. CG) = Fn 

The following notations are used (after the replacement of Ln with L`n and Ln+1) 

▪ The distance between  

▪ object and L1 (i.e. OA) = u 

▪ image and Ln+1 (i.e. FI) = v`  

v` = FI = EI – EF = EI – (DF – DE) = v − dn + 
dnf

`
n

f`n+ fn+1− dn
 [using equation (3)] 

That is v = v` + dn − 
dnf

`
n

f`n+ fn+1− dn
  -------  (4) 

▪ first principal point and L1 = h`n+1,1 

▪ second principal point and Ln+1 (i.e. CF) = h`n+1,2  

h`n+1,2 = CF = CE + EF = CE + (DF – DE) = hn,2 + dn − 
dnf

`
n

f`n+ fn+1− dn
 [using equation (3)] 

That is h`n+1,2 =  hn,2 + dn − 
dnf

`
n

f`n+ fn+1− dn
    -------    (5) 

▪ Ln-1 and L`n (i.e. BD) = d`n-1  

d`n-1 = BD = BE – DE = dn−1 − 
dnf

`
n

f`n+ fn+1− dn
 [using equation (3)] 

That is dn−1 = d
`
n−1 + 

dnf
`
n

f`n+ fn+1− dn
 -------  (6) 

▪ The focal length of the system (i.e. CG) = F`n+1 = Fn 

With the above arrangement in place, it will now be shown that hn,1 = h`n+1,1 

 hn,1 = Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

 dn−1 − fn

 

= Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

(d`n−1 +  
dnf`n

f`n+ fn+1− dn
) − (

f`nfn+1
f`n+ fn+1− dn

 )

 [using equation (6) and equation (2)] 
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= Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`n−1 +  f
`n(

dn − fn+1
f`n+ fn+1 − dn

)  

= Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`n−1 +  f
`n

(

 
 1

f`n
dn − fn+1

 − 1
)

 
 
  

  

 

= Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`n−1 −  f
`n

(

 
 1

1 −  
f`n

dn − fn+1)

 
 
  

= Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`n−1 −  f
`n

(

 
 1

f`n
f`n

  −  
f`n

dn − fn+1)

 
 
  

  

  

= Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

d`n−1− 
1

1

f`n
 −  

1
dn − fn+1

  

= h`n+1,1  

 

The fact that hn,1 = h`n+1,1 should not be surprising, since the object focus and the (object) focal length remain unchanged 

when Ln is replaced with an equivalent system of two lenses, L`n and Ln+1. 

Now, for the inductive step of the Mathematical Induction, assume that 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
. 

Since hn,1 = h`n+1,1, v = v` + dn − 
dnf

`
n

f`n+ fn+1− dn
 [equation (4)], and Fn = F`n+1, this implies that 

  
1

u + h`n+1,1
+

1

v` + dn − 
dnf`n

f`n+ fn+1− dn
  +  hn,2

=
1

F`n+1
 

 ∴
1

u + h`n+1,1
+

1

v`  + h`n+1,2
=

1

F`n+1
, since h`n+1,2 = hn,2 + dn − 

dnf
`
n

f`n+ fn+1− dn
 [equation (5)] 

 

Dropping the dashes, for convenience, gives 
1

u + hn+1,1
+

1

v  + hn+1,2
=

1

Fn+1
; i.e. the same assumed formula except that n is 

replaced with n+1. 

 

Thus: the formula 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
 is true for all positive integer values of n.  

VI. OTHER FORMULAS 

In this section, the following is proved: 
Fn

Fn+1
=

Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

hn,2+ dn

hn+1,2
=

fn+1

fn+1 +  hn+1,2 −  Fn+1
 

 

The diagram below shows a ray of light, parallel to the principal axis of a system of n+1 lenses, being refracted by the 

system to go through H, the image focus of the system. Without Ln+1, the ray would have gone through I, the image focus of 

the system of the preceding n lenses. 
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BFH and CGH are similar triangles. Hence: 
BF

CG
=

FH

GH
=

FH

FH − FG
=

Fn+1

Fn+1 −  hn+1,2 
 

ADI and CGI are similar triangles. Hence: 
AD

CG
=

DI

GI
=

DI

DI−DG
=

DI

DI−(DE+EG)
=

Fn

Fn −  hn,2 − dn
 

BF = AD. Hence: 
BF

CG
=

AD

CG
⇒

Fn+1

Fn+1 −  hn+1,2 
=

Fn

Fn −  hn,2 – dn
 

⇒
Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

Fn

Fn+1
                -------                     (7) 

Continuing: (Fn −  hn,2  −  dn)Fn+1 = (Fn+1 −  hn+1,2)Fn ⇒ (hn,2 +  dn)Fn+1 = hn+1,2Fn 

⇒
hn,2+ dn

hn+1,2
=

Fn

Fn+1
   -------   (8) 

 

Recall equation (1): Fn – hn,2 = 
1

1

fn
 – 

1

 dn−1 – (Fn−1 –  hn−1,2)

 

⇒
1

Fn – hn,2
=

1

fn
 – 

1

 dn−1 − (Fn−1 –  hn−1,2)
⇒

1

 dn−1 − (Fn−1 –  hn−1,2)
= 

1

fn
 –  

1

Fn – hn,2
= 

Fn – hn,2− fn

fn(Fn – hn,2)
    

 

⇒
 dn−1 − Fn−1+  hn−1,2

Fn – hn,2
 =  

fn

Fn – hn,2− fn
 ⇒ (by increasing n by 1) 

 dn − Fn+  hn,2

Fn+1 –  hn+1,2
 =  

fn+1

Fn+1 – hn+1,2 −  fn+1
 

 

⇒
Fn −  hn,2 − dn

Fn+1 –  hn+1,2
 =  

fn+1

fn+1 +  hn+1,2 −  Fn+1
       ------  (9) 

 

Hence, from equation (7), equation (8), and equation (9): 
Fn

Fn+1
=

Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

hn,2+ dn

hn+1,2
=

fn+1

fn+1 +  hn+1,2 −  Fn+1
 

 

In the above result, if dr and dn+1-r are interchanged ∀ r ∈ [1,n], and if fr and fn+2-r are interchanged ∀ r ∈ [1,n+1], then hn,2 will 

have to be replaced with hn,1 and hn+1,2 will have to be replaced with hn+1,1 

Hence: 
Fn

Fn+1
=

Fn −  hn,1 − d1

Fn+1 −  hn+1,1 
=

hn,1+ d1

hn+1,1
=

f1

f1 +  hn+1,1 −  Fn+1
, where 

▪ Fn is the focal length of the system of lenses where the L1 is absent 

▪ hn,1 is the distance between the first principal point and L2 (with L1 being absent) 

 

Note the following (which will be used in the next section): 

▪ 
 dn+  hn,2 − Fn 

Fn
=

 hn+1,2 − Fn+1 

Fn+1
  -------  (10) 

▪   
fn+1 +  hn+1,2 −  Fn+1

fn+1Fn+1
=

1

Fn
  -------  (11) 

VII.  TRANSVERSE MAGNIFICATION FORMULA 

The transverse magnification Mn of a system of n lenses is given by Mn = 
v  + hn,2

Fn
− 1. 

This will be proved by the method of Induction. 

The formula is trivially true when n = 1, since h1,2 = 0. 

Also, the formula is a standard one when n = 2. 

For the inductive step, assume that Mn = 
v  + hn,2

Fn
− 1 and consider the following situation. 

The diagram below shows an image In+1 produced by an object O under the effect of a system of n+1 lenses (only the last 2 

lenses are shown).  

Without Ln+1, O would have produced the image In, and in this case, the image distance v = AIn in the assumed formula 

Mn = 
v  + hn,2

Fn
− 1. 
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A virtual object In produces a real image In+1 under refraction by Ln+1 (alone) 

For this single lens case,  

▪ the object distance, u = -BIn (the negative sign is because of the virtual object) = -(AIn – AB) = -(v – dn)  

▪ The image distance v` = BIn+1 

Using “
1

u 
+

1

v 
=

1

f
” gives  

1

−(v – dn)
+

1

v` 
=

1

fn+1
 ⇒

1

(v – dn)
=

1

v` 
−

1

fn+1
=

fn+1 − `v 

v` fn+1
⇒ v − dn =

v` fn+1

fn+1 − `v 
 

⇒ v =  dn +
v` fn+1

fn+1 − `v 
  -------           (12) 

Since magnification is multiplicative, it means that Mn+1 = Mn (−{
v`

fn+1
− 1}); note the negative sign because of the virtual 

object. 

 ∴ Mn+1 = −(
v  + hn,2

Fn
− 1) (

v`

fn+1
− 1) = −(

{dn+
v` fn+1
fn+1 − `v 

} + hn,2

Fn
− 1) (

v`

fn+1
− 1) [using equation (12)] 

 

= −(

{dn+ hn,2}{fn+1 − `v} + v` fn+1
(fn+1 − `v)

  

 Fn
− 1) (

v`− fn+1

fn+1
) = −(

{dn+ hn,2}{fn+1 − `v} + v` fn+1 − (fn+1 − `v)Fn 

(fn+1 − `v)Fn
) (

v`− fn+1

fn+1
)  

 

=
  {dn+ hn,2−  Fn}{fn+1 − `v} + v`fn+1

fn+1Fn
=

  {dn+ hn,2−  Fn}{fn+1 − `v}

fn+1Fn
+

v`

Fn
= (

 dn+ hn,2−  Fn

Fn
) (1 −

 `v

fn+1
) +

v`

Fn
  

= (
hn+1,2 − Fn+1 

Fn+1
) (1 −

 `v

fn+1
) +

v`

Fn
 [using equation (10)] = 

hn+1,2 − Fn+1 

Fn+1
−

(hn+1,2 − Fn+1 )v`

fn+1Fn+1
+

v`

Fn
  

 

= 
hn+1,2 − Fn+1 

Fn+1
−

(hn+1,2 − Fn+1 )v`

fn+1Fn+1
−

v`

Fn+1
+

v`

Fn+1
+

v`

Fn
 [adding and subtracting 

v`

Fn+1
] 

 

= 
hn+1,2 − Fn+1 

Fn+1
−

(hn+1,2 − Fn+1 + fn+1)v`

fn+1Fn+1
+

v`

Fn+1
+

v`

Fn
= 

hn+1,2 − Fn+1 

Fn+1
−

v`

Fn
+

v`

Fn+1
+

v`

Fn
 [using equation (11)] 

 

= 
hn+1,2 − Fn+1 

Fn+1
+

v`

Fn+1
=

v`+ hn+1,2 

Fn+1
− 1   

 

Dropping the dash, for convenience, gives Mn+1 =
v + hn+1,2 

Fn+1
− 1. This is the same formula for Mn, except that n is replaced 

with n+1. The induction step is completed. 

VIII. CONCLUSION 

In a system of n thin coaxial lenses let 

▪ the distance between 

▪ an object and the first lens be u 

▪ the image and the last lens be v 

▪ the first lens and the first principal point be hn,1 

▪ the last lens and the second principal point be hn,2 

▪ the distance between the rth lens and (r+1)th lens be dr 

▪ the focal length of  

▪ the rth lens be fr 

▪ the system be Fn 

▪ the transverse magnification be m 

 

The following formulas are valid 

▪ 
1

Fn
= ∑ {(−1)m∏ [(∑

1

frs

as
rs=as−1+1                                                

0=a0<a1<⋯<𝑎m<am+1=n;dn=1 

)das]
m+1
s=1 }n−1

m=0 , where, for a fixed value of m, all 

combinations of values of the a’s (satisfying the condition “0 = a0 < a1 < … < am < am+1 = n”) are taken in the inner sum. 

▪ hn,2 = Fn −
1

1

fn
 − 

1

 dn−1 – 
1

1
fn−1

 – 
1
⋱

              
1

 d2 – 
1

1
f2
 – 

1
 d1 − f1

  

▪ hn,1 = Fn −
1

1

f1
 − 

1

 d1 – 
1

1
f2
 – 

1
⋱

              
1

 dn−2 – 
1

1
fn−1

 – 
1

 dn−1 − fn
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▪ 
1

u + hn,1
+

1

v + hn,2
=

1

Fn
 

▪ Mn = 
v  + hn,2

Fn
− 1 

▪ 
Fn

Fn+1
=

Fn −  hn,2 − dn

Fn+1 −  hn+1,2 
=

hn,2+ dn

hn+1,2
=

fn+1

fn+1 +  hn+1,2 −  Fn+1
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